Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hằng
Xem chi tiết
Trần Văn Thành
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
bảo ngọc
9 tháng 6 2018 lúc 0:12

C= x^6+27/x^4 - 3x^3 +6x^2 -9x + 9

= (x^2+3)(x^4-3x^2+9)/(x^4+3x^2)-(3x^3+9x)+(3x^2+9)

=(x^2+3)(x^4+6x^2+9-9x^2)/(x^2+3x)(x^2-3x+3)

= (x^2+3+3x)(x^2+3-3x)/x^2+3-3x =x^2+3x+3

=(x^2+3x+9/4) -9/4+3 = (x+3/2)^2 +3/4 >= 3/4

Dấu = xảy ra khi x=-3/2

Vậy Cmin = 3/4 <=> x=-3/2

Nguyễn Mary
Xem chi tiết
kuroba kaito
17 tháng 3 2018 lúc 13:53

\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)

= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)

=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)

= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+1+4}\)

= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)

vì (x-1)2 ≥ 0 ∀ x

⇔ (x-1)2 +4 ≥ 4

\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)

\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)

⇔ A \(\le\dfrac{7}{2}\)

⇔ Min A =\(\dfrac{7}{2}\)

khi x-1=0

⇔ x=1

vậy ....

Phạm Nguyễn Tất Đạt
17 tháng 3 2018 lúc 16:16

Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)

\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(B=2-\dfrac{3}{x^2-8x+16+6}\)

\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)

\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)

Phạm Nguyễn Tất Đạt
17 tháng 3 2018 lúc 16:36

d)\(D=\dfrac{x^6+512}{x^2+8}\)

\(D=\dfrac{x^6+8x^4-8x^4-64x^2+64x^2+512}{x^2+8}\)

\(D=\dfrac{x^4\left(x^2+8\right)-8x^2\left(x^2+8\right)+64\left(x^2+8\right)}{x^2+8}\)

\(D=\dfrac{\left(x^2+8\right)\left(x^4-8x^2+64\right)}{x^2+8}\)

\(D=x^4-8x^2+64\)

\(D=\left(x^2-4\right)^2+48\ge48\)

\(\Rightarrow MIND=48\Leftrightarrow x=\pm2\)

Nguyễn Thiện Minh
Xem chi tiết
Lưu Thị Thu Hậu
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2020 lúc 18:03

Bài 1: Tìm x

a) Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\)

\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-9=0\)

\(\Leftrightarrow-12x-24=0\)

\(\Leftrightarrow-12x=24\)

hay x=-2

Vậy: x=-2

b) Ta có: \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)

\(\Leftrightarrow9x^2-6x+1+2\left(x^2+6x+9\right)-11\left(x-1\right)\left(x+1\right)-6=0\)

\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18-11\left(x^2-1\right)-6=0\)

\(\Leftrightarrow11x^2+6x+12-11x^2+11=0\)

\(\Leftrightarrow6x+23=0\)

\(\Leftrightarrow6x=-23\)

hay \(x=-\frac{23}{6}\)

Vậy: \(x=-\frac{23}{6}\)

c) Ta có: \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

hay \(x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

d) Ta có: \(x^3+9x^2+27x+27=0\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

Vậy: x=-3

Kiều Vũ Linh
16 tháng 10 2020 lúc 18:23

a) (2x + 1)2 - 4(x + 2)2 = 9

4x2 + 4x + 1 - 4(x2 + 4x + 4) = 9

4x2 + 4x + 1 - 4x2 - 16x - 16 = 9

-12x - 15 = 9

-12x = 9 + 15

-12x = 24

x = 12 : (-2)

x = -2

b) (3x - 1)2 + 2(x + 3)2 + 11(x + 1)(1 - x) = 6

9x2 - 6x + 1 + 2(x2 + 6x + 9) - 11(x + 1)(x - 1) = 6

9x2 - 6x + 1 + 2x2 + 12x + 18 - 11(x2 - 1) = 6

9x2 - 6x + 1 + 2x2 + 12x + 18 - 11x2 + 11 = 6

6x + 30 = 6

6x = 6 - 30

6x = -24

x = -24 : 6

x = -4

c) 8x3 - 12x2 + 6x - 1 = 0

(2x)3 - 3.(2x)2.1 + 3.2x.12 - 13 = 0

(2x - 1)3 = 0

2x - 1 = 0

2x = 1

x = 1/2

d) x3 + 9x2 + 27x + 27 = 0

x3 + 3.x2.3 + 3.x.32 + 33 = 0

(x + 3)3 = 0

x + 3 = 0

x = 0 - 3

x = -3

Khách vãng lai đã xóa
Phạm Thị Hằng
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 10 2021 lúc 12:07

1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)

2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)

4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)

6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)

7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)

8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)

9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)

10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)

11) \(=\left(x+2\right)^3\)

12) \(=\left(x+3\right)^3\)

 

Tiến Hoàng Minh
Xem chi tiết
Rin Huỳnh
8 tháng 12 2021 lúc 23:56

MinC = 3/4 (khi x = -3/2)

Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 7:21

\(C=\dfrac{\left(x^2+3\right)\left(x^4-3x^2+9\right)}{x^4+3x^2-3x^3-9x+3x^2+9}=\dfrac{\left(x^2+3\right)\left(x^4+6x^2+9-9x^2\right)}{\left(x^2+3\right)\left(x^2-3x+3\right)}\\ C=\dfrac{\left(x^2+3\right)^2-9x^2}{x^2-3x+3}=\dfrac{\left(x^2-3x+3\right)\left(x^2+3x+3\right)}{x^2-3x+3}\\ C=x^2+3x+3=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)