\(C=\dfrac{\left(x^2+3\right)\left(x^4-3x^2+9\right)}{x^4+3x^2-3x^3-9x+3x^2+9}=\dfrac{\left(x^2+3\right)\left(x^4+6x^2+9-9x^2\right)}{\left(x^2+3\right)\left(x^2-3x+3\right)}\\ C=\dfrac{\left(x^2+3\right)^2-9x^2}{x^2-3x+3}=\dfrac{\left(x^2-3x+3\right)\left(x^2+3x+3\right)}{x^2-3x+3}\\ C=x^2+3x+3=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)