Tập hợp tất cả giá trị của tham sô m để hàm số \(y=\sqrt{x-2m+1}\) xác định với mọi \(x\in\left[1;3\right]\)
Tìm tất cả giá trị thực của tham số m để hàm số \(y=\sqrt{\left(m-2\right)x+2m-3}\) xác định với mọi x ∈ [-1; 4]
Để y xác định thì \(\left(m-2\right)x+2m-3\ge0\forall x\in\left[-1;4\right]\)
\(\Leftrightarrow mx-2x+2m-3\ge0\)
\(\Leftrightarrow m\left(x+2\right)-2x-3\ge0\)
\(\Leftrightarrow m\ge\dfrac{2x+3}{x+2}\left(x+2>0\forall x\in\left[-1;4\right]\right)\)
\(\Rightarrow1\le m\le\dfrac{11}{6}\)
tìm tất cả các giá trị của tham số m để hàm số y=\(\sqrt{x-m+1}+\dfrac{2x}{\sqrt{-x+2m}}\) xác định trên khoảng(3;4)
ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\)
\(\Rightarrow x\in[m-1;2m)\)
Để hàm xác định trên (3;4)
\(\Rightarrow\left(3;4\right)\subset[m-1;2m)\)
\(\Rightarrow\left\{{}\begin{matrix}m-1\le3\\2m\ge4\end{matrix}\right.\) \(\Rightarrow2\le m\le4\)
Bài 1: Tìm tập hợp các giá trị của m để hàm số \(y=\sqrt{\left(m+10\right)x^2-2\left(m-2\right)x+1}\)có tập xác định D= R
Bài 2:Có bao nhiêu giá trị m nguyên để hàm số \(y=1-\sqrt{\left(m+1\right)x^2-2\left(m-1\right)x+2-2m}\)có tập xác định là R?
Tìm số các giá trị của tham số m để hàm sô \(y=\sqrt{2.sinx.sin3x+4m.sin2x-cos2x-m^2+1}\) xác định với mọi x
\(2sinx.sin3x+4m.sin2x-cos2x-m^2+1\ge0;\forall x\)
\(\Leftrightarrow-cos4x+4m.sin2x-m^2+1\ge0\)
\(\Leftrightarrow2sin^22x+4m.sin2x-m^2\ge0\)
\(\Leftrightarrow2t^2+4m.t-m^2\ge0\) ; \(\forall t\in\left[-1;1\right]\)
\(\Leftrightarrow\left(t+m\right)^2\ge\dfrac{3m^2}{2}\)
\(\Rightarrow\left[{}\begin{matrix}t+m\ge\sqrt{\dfrac{3m^2}{2}}\\t+m\le-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t\ge-m+\sqrt{\dfrac{3m^2}{2}}\\t\le-m-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\)
Điều này đúng với mọi \(t\in\left[-1;1\right]\) khi:
\(\left[{}\begin{matrix}-1\ge-m+\sqrt{\dfrac{3m^2}{2}}\left(1\right)\\1\le-m-\sqrt{\dfrac{3m^2}{2}}\left(2\right)\end{matrix}\right.\)
- Xét (1), nếu \(m\le0\Rightarrow-m\ge0\Rightarrow-m+\sqrt{\dfrac{3m^2}{2}}>0\) (ktm)
Với \(m>0\Rightarrow-1\ge-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\le-2-\sqrt{6}\)
- Xét (2), với \(m>0\Rightarrow-m-\sqrt{\dfrac{3m^2}{2}}< 0\) (ktm)
Với \(m< 0\Rightarrow1\le-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\ge2+\sqrt{6}\)
Vậy \(\left[{}\begin{matrix}m\le-2-\sqrt{6}\\m\ge2+\sqrt{6}\end{matrix}\right.\)
Cách tam thức có vẻ tốt hơn cách này
Cách tam thức:
\(f\left(t\right)=2t^2+4mt-m^2\ge0;\forall t\in\left[-1;1\right]\)
Với \(m=0\) luôn thỏa mãn
Với \(m\ne0:\)
\(\Delta'=4m^2+2m^2=6m^2>0\); \(\forall m\ne0\)
\(\Rightarrow\) Bài toán thỏa mãn khi: \(\left[{}\begin{matrix}1\le t_1< t_2\\t_1< t_2\le-1\end{matrix}\right.\)
TH1: \(1\le t_1< t_2\Rightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\dfrac{t_1+t_2}{2}=-m>1\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-m^2+4m+2\ge0\\m< -1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
A, đến đây mới thấy cách làm hồi nãy quên hợp lại, xét TH \(m>0\) ra nghiệm \(m\le-2-\sqrt{6}\) mà quên luôn điều kiện m>0
TH2: \(t_1< t_2\le-1\Rightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\\dfrac{t_1+t_2}{2}=-m< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-m^2-4m+2\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Vậy \(m=0\) là giá trị duy nhất thỏa mãn
Phát hiện thêm 1 vấn đề nữa, \(A^2\ge B^2\Rightarrow\left[{}\begin{matrix}A\ge B\\A\le-B\end{matrix}\right.\) là sai, thực tế phức tạp và nhiều trường hợp hơn nhiều
Vậy thì chỉ có cách tam thức này là ổn thôi nếu ko cô lập được m. Kiểu bình phương kia sai mất căn bản.
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{8cosx-6sinx-\left(3sinx-4cosx\right)^2-2m}\) có tập xác định là R
Hàm xác định trên R khi và chỉ khi:
\(8cosx-6sinx-\left(3sinx-4cosx\right)^2-2m\ge0;\forall x\) (1)
Đặt \(3sinx-4cosx=t\)
\(\Rightarrow t^2=\left(3sinx-4cosx\right)^2\le\left(3^2+\left(-4\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le t\le5\)
(1) tương đương:
\(-2t-t^2-2m\ge0;\forall t\in\left[-5;5\right]\)
\(\Leftrightarrow2m\le-t^2-2t;\forall t\in\left[-5;5\right]\)
\(\Leftrightarrow2m\le\min\limits_{t\in\left[-5;5\right]}\left(-t^2-2t\right)\)
Xét hàm \(f\left(t\right)=-t^2-2t\) trên \(\left[-5;5\right]\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-5\right)=-15\) ; \(f\left(-1\right)=1\) ; \(f\left(5\right)=-35\)
\(\Rightarrow2m\le-35\Rightarrow m\le-\dfrac{35}{2}\)
Cho hàm số y=\(\sqrt{x+m-1}+\sqrt{m-3x}\).Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có tập xác định là R.
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
Để hàm số xác định thì x-m+2>=0 và x-m+2<>1
=>x>=m-2 và x<>m-1
=>m-2<=0 và \(m-1\notin\left(0;1\right)\)
=>m<=2 và (m-1<=0 hoặc m-1>=1)
=>m=2 hoặc m<=1
Cho hàm số \(y=\dfrac{mx-2m-3}{x-m}\) với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên các khoảng xác định. Tìm số phần tử của S
Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{x-m}-\sqrt{6-2x}\)
có tập xác định là 1 đoạn trên trục số là
\(\left\{{}\begin{matrix}m\le x\\x\le3\end{matrix}\right.\Rightarrow m\le3\Rightarrow\left[m;3\right]\)
Vay \(m\le3\) thi ham so co tap xd la 1 doan tren truc so
P/s: Ve cai truc so ra la hieu