ĐKXĐ: \(x\ge2m-1\)
Để hàm xác định trên đoạn đã cho \(\Rightarrow2m-1\le1\Rightarrow m\le1\)
ĐKXĐ: \(x\ge2m-1\)
Để hàm xác định trên đoạn đã cho \(\Rightarrow2m-1\le1\Rightarrow m\le1\)
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Gọi S là tập hợp tất cả các giá trị thực của tham số a sao cho hàm số \(f\left(x\right)=\sqrt{4x-x^2-6a^3-18a^2}-\sqrt{a^3+3a^2-2x-x^2}\) chỉ xác định tại đúng một điểm. Tính số phần tử của S ?
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)
Tìm tập hợp tất cả các giá trị của tham số m để hàm số \(y=f\left(x\right)=\sqrt{x^2-3mx+4}\) có tập xác định là D=R
1. tìm tất cả các giá trị thực của tham số m để hàm số \(\frac{x+2m+2}{x-m}\) xác định trên (-1;0) ....... Đ/S: \(m\ge0\)
2. tìm tất cả các giá trị thực của tham số m để hàm số \(y=\frac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1)
3. tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{x-m}+\sqrt{2x-m-1}\) xác định trên \(\left(0;+\infty\right)\)
Cho hàm số \(y=x^2-\left(m-\sqrt{m^2-16}\right)x+2m+2\sqrt{m^2-16}\) . Gọi GTLN , GTNN của hàm số trên [2:3] lần lượt là \(y_1,y_2\) . Số giá trị của tham số m để \(y_1-y_2=3\) là bao nhiêu
Tìm tất cả giá trị thực m để hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định khoảng (1;3)
Tìm giá trị thực của tham số m để hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định trên khoảng (-1;3)