Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2021 lúc 21:01

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}u=v\\v=\sqrt{17-x^2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v+uv=9\\u^2+v^2=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=9-\left(u+v\right)\\\left(u+v\right)^2-2uv=17\end{matrix}\right.\)

\(\Rightarrow\left(u+v\right)^2+2\left(u+v\right)-35=0\)

\(\Rightarrow\left[{}\begin{matrix}u+v=5\Rightarrow uv=4\\u+v=-7\Rightarrow uv=16\end{matrix}\right.\)

\(\Rightarrow...\)

Phương Thảo
Xem chi tiết
TFBoys
7 tháng 8 2017 lúc 16:46

1. ĐK: \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{3x-2}\ge0\\b=\sqrt{x-1}\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(3x-2\right)\left(x-1\right)}=\sqrt{3x^2-5x+2}\\a^2+b^2=\left(3x-2\right)+\left(x-1\right)=4x-3\end{matrix}\right.\)

pt trên được viết lại thành

\(a+b=a^2+b^2-6+2ab\)

\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\end{matrix}\right.\)

\(\Leftrightarrow a+b=3\) (vì \(a,b\ge0\))

\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)

Đến đây thì dễ rồi, bạn bình phương 2 lần để tìm x, sau đó đối chiếu với ĐK để loại nghiệm.

2. ĐK: \(-\sqrt{17}\le x\le\sqrt{17}\)

Đặt \(\left\{{}\begin{matrix}a=x\\b=\sqrt{17-x^2}\ge0\end{matrix}\right.\)

Ta lập được hệ phương trình

\(\left\{{}\begin{matrix}a+b+ab=9\\a^2+b^2=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=9\\\left(a+b\right)^2-2ab=17\end{matrix}\right.\) (I)

Đặt S=x+y; P=xy thì

\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}S+P=9\\S^2-2P=17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}S=5\\P=4\end{matrix}\right.\\\left\{{}\begin{matrix}S=-7\\P=16\end{matrix}\right.\end{matrix}\right.\)

Đến đây dễ rồi bạn làm tiếp nha

phantuananh
Xem chi tiết
Lưu Phương  Thảo
28 tháng 2 2016 lúc 9:56

<3

Đặng Minh Triều
28 tháng 2 2016 lúc 13:09

Đặt \(y=\sqrt{17-x^2}\)

ta có HPT: \(\begin{cases}x+y=9-xy\\x^2+y^2=17\end{cases}\)

rồi hệ dễ tự giải <3

saadaa
Xem chi tiết
Thiên An
25 tháng 3 2017 lúc 17:01

Đặt \(y=\sqrt{17-x^2}\ge0\) ta có hệ \(\hept{\begin{cases}x^2+y^2=17\\x+y+xy=9\end{cases}}\)

Đặt x + y = S; xy = P hệ trên có dạng \(\hept{\begin{cases}S^2-2P=17\\S+P=9\end{cases}}\)

Dễ dàng tìm được S và P để suy ra các giá trị của x

Tập nghiệm pt là S = {1;4}

Hày Cưi
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 14:29

ĐKXĐ: ....

Đặt \(x+\sqrt{17-x^2}=a\ge-\sqrt{17}\Rightarrow x\sqrt{17-x^2}=\frac{a^2-17}{2}\)

Phương trình trở thành:

\(a+\frac{a^2-17}{2}=9\Leftrightarrow a^2+2a-35=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x+\sqrt{17-x^2}=5\)

\(\Leftrightarrow\sqrt{17-x^2}=5-x\)

\(\Leftrightarrow17-x^2=x^2-10x+25\)

\(\Leftrightarrow2x^2-10x+8=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Khách vãng lai đã xóa
Giai Điệu Bạc
Xem chi tiết
Akai Haruma
10 tháng 3 2018 lúc 18:37

Lời giải:

ĐKXĐ:......

Ta có: Đặt \(y=\sqrt{17-x^2}\Rightarrow x^2+y^2=17\)

Ta chuyển phương trình về hệ phương trình:

\(\left\{\begin{matrix} x+y+xy=9\\ x^2+y^2=17\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy=9-(x+y)\\ (x+y)^2-2xy=17\end{matrix}\right.\)

\(\Rightarrow (x+y)^2-2[9-(x+y)]=17\)

\(\Leftrightarrow (x+y)^2+2(x+y)-35=0\)

\(\Leftrightarrow (x+y-5)(x+y+7)=0\)

Nếu \(x+y=5\Rightarrow xy=9-5=4\)

Theo định lý Viete đảo thì $x,y$ là nghiệm của PT: \(X^2-5X+4=0\)

\(\Rightarrow (x,y)=(1,4)\Leftrightarrow (x,\sqrt{17-x^2})=(1,4)\)

\(\Rightarrow x=1\)

Nếu \(x+y=-7\Rightarrow xy=9-(-7)=16\)

Vì \(x+y<0; y\geq 0\Rightarrow x< 0\Rightarrow xy\leq 0\Leftrightarrow 16\leq 0\) (vô lý nên loại)

Vậy \(x=1\)

Ác Quỷ Bóng Đêm
Xem chi tiết
Lightning Farron
1 tháng 10 2016 lúc 17:44

Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)

Đặt \(t=x+\sqrt{17-x^2}\left(t>0\right)\)

\(\Rightarrow t^2=17+2x\sqrt{17-x^2}\)

\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)

thay vào pt 

\(t+\frac{t^2-17}{2}=9\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-7\left(loai\right)\\t=5\left(tm\right)\end{array}\right.\)

\(\Rightarrow x+\sqrt{17-x^2}=5\)

\(\Leftrightarrow\sqrt{17-x^2}=5-x\)

Với \(x< \sqrt{17}\) bình 2 vế ta có:

\(17-x^2=x^2-10x+25\)

\(\Leftrightarrow2x^2-10x+8=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{cases}\left(tm\right)}\)

 

Lightning Farron
1 tháng 10 2016 lúc 17:45

dòng cuối là \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{array}\right.\)(thỏa mãn)

Nguyên
Xem chi tiết
Mai Huyền My
Xem chi tiết