Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)
Đặt \(t=x+\sqrt{17-x^2}\left(t>0\right)\)
\(\Rightarrow t^2=17+2x\sqrt{17-x^2}\)
\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)
thay vào pt
\(t+\frac{t^2-17}{2}=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-7\left(loai\right)\\t=5\left(tm\right)\end{array}\right.\)
\(\Rightarrow x+\sqrt{17-x^2}=5\)
\(\Leftrightarrow\sqrt{17-x^2}=5-x\)
Với \(x< \sqrt{17}\) bình 2 vế ta có:
\(17-x^2=x^2-10x+25\)
\(\Leftrightarrow2x^2-10x+8=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{cases}\left(tm\right)}\)
dòng cuối là \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{array}\right.\)(thỏa mãn)