Lời giải:
ĐKXĐ:......
Ta có: Đặt \(y=\sqrt{17-x^2}\Rightarrow x^2+y^2=17\)
Ta chuyển phương trình về hệ phương trình:
\(\left\{\begin{matrix} x+y+xy=9\\ x^2+y^2=17\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy=9-(x+y)\\ (x+y)^2-2xy=17\end{matrix}\right.\)
\(\Rightarrow (x+y)^2-2[9-(x+y)]=17\)
\(\Leftrightarrow (x+y)^2+2(x+y)-35=0\)
\(\Leftrightarrow (x+y-5)(x+y+7)=0\)
Nếu \(x+y=5\Rightarrow xy=9-5=4\)
Theo định lý Viete đảo thì $x,y$ là nghiệm của PT: \(X^2-5X+4=0\)
\(\Rightarrow (x,y)=(1,4)\Leftrightarrow (x,\sqrt{17-x^2})=(1,4)\)
\(\Rightarrow x=1\)
Nếu \(x+y=-7\Rightarrow xy=9-(-7)=16\)
Vì \(x+y<0; y\geq 0\Rightarrow x< 0\Rightarrow xy\leq 0\Leftrightarrow 16\leq 0\) (vô lý nên loại)
Vậy \(x=1\)