\(7\tan x-4\cot x=0\)
Chứng minh:
1.\(\dfrac{\cot^2x-\sin^2x}{\cot^2x-\tan^2x}=\sin^2x\cdot\cos^2x\)
2.\(\dfrac{1-\sin x}{\cos x}-\dfrac{\cos x}{1+\sin x}=0\)
3.\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cot x}=\cos x\)
4.\(\dfrac{\tan x}{1-\tan^2x}\cdot\dfrac{\cot^2x-1}{\cot x}=1\)
5.\(\dfrac{1+\sin^2x}{1-\sin^2x}=1+2\tan^2x\)
Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)
2.
\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)
\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)
3.
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)
4.
\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)
5.
\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)
\(=tan^2x+1+tan^2x=1+2tan^2x\)
Giải PT:
a1. \(\cot\left(2x+\dfrac{\pi}{3}\right)\)=\(-\sqrt{3}\)
a2. \(\cot\left(3x-10^{\cdot}\right)\cot2x=1\)
a3. \(\cot\left(\dfrac{\pi}{4}-2x\right)-\tan x=0\)
a4. \(\cot\left(30^{\cdot}+3x\right)+\tan\left(x-10^{\cdot}\right)=0\)
a1.
$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$
$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên
$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên
a2. ĐKXĐ:...............
$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$
$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$
$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên
$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.
a3. ĐKXĐ:........
$\cot (\frac{\pi}{4}-2x)-\tan x=0$
$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$
$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên
$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.
a4. ĐKXĐ:.....
$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$
$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$
$=\cot (x+\frac{4\pi}{9})$
$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên
$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên.
Tính giá trị biểu thức:
\(P=\left[Tan\dfrac{17\Pi}{4}+Tan\left(\dfrac{7\Pi}{2}-x\right)\right]^2+\left[Cot\dfrac{13\Pi}{4}+Cot\left(7\Pi-x\right)\right]^2\)
\(P=\left[tan\dfrac{17\pi}{4}+tan\left(\dfrac{7\pi}{2}-x\right)\right]^2+\left[cot\dfrac{13\pi}{4}+cot\left(7\pi-x\right)\right]^2\)
\(=\left[tan\dfrac{\pi}{4}+tan\left(-\dfrac{\pi}{2}-x\right)\right]^2+\left[cot\left(-\dfrac{3\pi}{4}\right)+cot\left(-\pi-x\right)\right]^2\)
\(=\left[tan\dfrac{\pi}{4}-cotx\right]^2+\left[tan\dfrac{\pi}{4}-cotx\right]^2\)
\(=2\left(1-cotx\right)^2\)
tan x = -tan \(\frac{\Pi}{7}\)
tan (\(x^2+1\))=0
cot x = 3 tanx
\(tanx=-tan\frac{\pi}{7}\Leftrightarrow tanx=tan\left(-\frac{\pi}{7}\right)\)
\(\Leftrightarrow x=-\frac{\pi}{7}+k\pi\)
\(tan\left(x^2+1\right)=0\Leftrightarrow x^2+1=k\pi\) (\(k>0\))
\(\Leftrightarrow x=\pm\sqrt{k\pi-1}\)
\(cotx=3tanx\Leftrightarrow\frac{1}{tanx}=3tanx\Leftrightarrow tan^2x=\frac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=-\frac{1}{\sqrt{3}}\end{matrix}\right.\) \(\Rightarrow x=\pm\frac{\pi}{6}+k\pi\)
a) cho tan x = 3/4 tính cot x, sin x, cos x =...?
b) cho sin x = 7/25 tính cos x, tan x, cot x=....?
giúp tôi với!!!!
a) \(\frac{1}{cos^2x}=1+tan^2x=1+\frac{9}{16}=\frac{25}{16}\)
\(\Leftrightarrow cos^2x=\frac{16}{25}\Leftrightarrow\orbr{\begin{cases}cosx=\frac{4}{5}\\cosx=\frac{-4}{5}\end{cases}}\)
- \(cosx=\frac{4}{5}\):
\(sinx=cosxtanx=\frac{4}{5}.\frac{3}{4}=\frac{3}{5}\)
\(cotx=\frac{1}{tanx}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\).
- \(cosx=\frac{-4}{5}\):
\(sinx=cosxtanx=\frac{-4}{5}.\frac{3}{4}=\frac{-3}{5}\)
\(cotx=\frac{1}{tanx}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\).
b) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{49}{625}=\frac{576}{625}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{24}{25}\\cosx=-\frac{24}{25}\end{cases}}\)
- \(cosx=\frac{24}{25}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{7}{25}}{\frac{24}{25}}=\frac{7}{24}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\frac{7}{24}}=\frac{24}{7}\)
- \(cosx=\frac{-24}{25}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{7}{25}}{\frac{-24}{25}}=-\frac{7}{24}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\frac{7}{24}}=\frac{-24}{7}\)
Giải phương trình
\(\sin x+2\cos x+2\tan x+4\cot x+6=0\)
Giải các pt sau:
a) \(\cos^2x-\cos x=0\)
b) \(2\sin2x\) + \(\sqrt{2}\sin4x=0\)
c) \(8\cos^2x+2\sin x-7=0\)
d) \(4\cos^4x+\cos^2x-3=0\)
e) \(\sqrt{3}\tan x-6\cot x+\left(2\sqrt{3}-3\right)=0\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=0\end{matrix}\right.\)
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}cos2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\cos2x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\2x=\dfrac{3\pi}{4}+k2\pi\\2x=\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{3\pi}{8}+k\pi\\x=\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)
a, \(cos^2x-cosx=0\)
\(\Leftrightarrow cosx\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\) (k ∈ Z)
Vậy...
b, \(2sin2x+\sqrt{2}sin4x=0\)
\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)
\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\dfrac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\pm\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\)
Vậy...
c, \(8cos^2x+2sinx-7=0\)
\(\Leftrightarrow8\left(1-sin^2x\right)+2sinx-7=0\)
\(\Leftrightarrow8sin^2x-2sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
Vậy...
d, \(4cos^4x+cos^2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\dfrac{3}{4}\\cos^2x=-1\left(loai\right)\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{cos2x+1}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow cos2x=\dfrac{1}{2}\)
\(\Leftrightarrow2x=\pm\dfrac{\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k\pi\)
Vậy...
e, \(\sqrt{3}tanx-6cotx+\left(2\sqrt{3}-3\right)=0\) (ĐK: \(x\ne\dfrac{k\pi}{2}\))
\(\Leftrightarrow\sqrt{3}tanx-\dfrac{6}{tanx}+\left(2\sqrt{3}-3\right)=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\left(tm\right)\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)
Vậy...
c, \(8cos^2x+2sinx-7=0\)
\(\Leftrightarrow-8sin^2x+2sinx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\)
Với \(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Với \(sinx=-\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)
d, \(4cos^4x+cos^2x-3=0\)
\(\Leftrightarrow\left(4cos^2x-3\right)\left(cos^2x+1\right)=0\)
\(\Leftrightarrow4cos^2x-3=0\left(\text{Vì }cos^2x+1>0\right)\)
\(\Leftrightarrow cos^2x=\dfrac{3}{4}\)
\(\Leftrightarrow cosx=\pm\dfrac{\sqrt{3}}{2}\)
Với \(cosx=\dfrac{\sqrt{3}}{2}\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)
Với \(cosx=-\dfrac{\sqrt{3}}{2}\Leftrightarrow x=\pm\dfrac{5\pi}{6}+k2\pi\)
Rút gọn biểu thức sau:\(A=\left[tan\frac{17\pi}{4}+tan\left(\frac{7\pi}{2}-x\right)\right]^2+\left[cot\frac{17\pi}{4}+cot\left(7\pi\right)-x\right]^2\)
\(\cot\left(7\pi\right)\) ko xác định bạn ơi
Thì tách bình thường thôi :)
\(A=\left[\tan\left(4\pi+\frac{\pi}{4}\right)+\tan\left(3\pi+\frac{\pi}{2}-x\right)\right]^2+\left[\cot\left(4\pi+\frac{\pi}{4}\right)+\cot\left(-x\right)\right]^2\)
\(A=\left[\tan\left(\frac{\pi}{4}\right)+\cot x\right]^2+\left[\cot\left(\frac{\pi}{4}\right)-\cot x\right]^2\)
\(A=\left(1+\cot x\right)^2+\left(1-\cot x\right)^2=...\)
giải các pt sau:
a, cot(x-\(\dfrac{\pi}{3}\))=1
b, tan(x+\(48^o\))=tan\(25^o\)
c, tan(x+\(\dfrac{3\pi}{4}\))=tan\(\dfrac{\pi}{7}\)
a: =>x-pi/3=pi/4+kpi
=>x=7/12pi+kpi
b: =>x+48 độ=25 độ+k*180
=>x=-23 độ+k*180 độ
c: =>x+3/4pi=pi/7+kpi
=>x=-17/28pi+kpi