Chứng minh với mọi tam giác không vuông ABC có:
a, tan A + tan B + tan C = tan A . tan B . tan C
b, tan 2A + tan 2B + tan 2C = tan 2A . tan 2B . tan 2C ( A, B, C ≠ \(\frac{\text{π}}{4}\) )
Cho tam giác ABC chứng minh:
a)\(sin\frac{A}{2}=cos\frac{B}{2}.cos\frac{C}{2}-sin\frac{B}{2}sin\frac{C}{2}\)
b)\(\frac{tan^2A-tan^2B}{1-tan^2A.tan^2B}=-tan\left(A-B\right).tanC\)
c) cotA.cotB + cotB.cotC+cotC.cotA=1
a/ \(\frac{A}{2}+\left(\frac{B}{2}+\frac{C}{2}\right)=90^0\)
\(\Rightarrow sin\frac{A}{2}=cos\left(\frac{B}{2}+\frac{C}{2}\right)=cos\frac{B}{2}cos\frac{C}{2}-sin\frac{B}{2}.sin\frac{C}{2}\)
b/ \(\frac{tan^2A-tan^2B}{1-tan^2A.tan^2B}=\frac{\left(tanA-tanB\right)}{\left(1+tanA.tanB\right)}.\frac{\left(tanA+tanB\right)}{\left(1-tanA.tanB\right)}=tan\left(A-B\right).tan\left(A+B\right)\)
\(=tan\left(A-B\right).tan\left(180^0-C\right)=-tan\left(A-B\right).tanC\)
c/
\(A+B+C=180^0\Rightarrow cot\left(A+B\right)=-cotC\)
\(\Leftrightarrow\frac{cotA.cotB-1}{cotA+cotB}=-cotC\)
\(\Leftrightarrow cotA.cotB-1=-cotA.cotC-cotB.cotC\)
\(\Leftrightarrow cotA.cotB+cotB.cotC+cotA.cotC=1\)
cho a,b,c là số đo của các góc nhọn thỏa mãn \(\cos^2a+\cos^2b+\cos^2c\)\(\ge\)2
Chứng minh rằng:\((\tan a\times\tan b\times\tan c)^2\le\frac{1}{8}\)
tam giác này là tam giác gì ? Biết:
\(tan^2A+tan^2B=2.tan^2\dfrac{A+B}{2}\)
cao nhân đi qua giúp em với, mai thầy kiểm tra rồi hiccc
Anh có bài giải câu này chưa cho em xin với. Chỉ biết nó là tam giác cân :))
Cho tam giác ABC, chứng minh rằng:
1) Sin2A+Sin2B+Sin2C=4SinA.SinB.SinC
2) Cos 2A + Cos 2B + Cos 2C = 4.CosA.CosB.CosC
3) 4R + r = P.( Tan \(\frac{a}{2}\) + Tan \(\frac{b}{2}\) + Tan \(\frac{c}{2}\) )
4) a.Sin(b-c) +b.Sin(c-a) +c.Sin(a-b)=0
Help me
Cho \(\tan \left( {a + b} \right) = 3,\,\tan \left( {a - b} \right) = 2\).
Tính: \(\tan 2a,\,\,\tan 2b\)
Ta có:
\(\begin{array}{l}2a = \left( {a + b} \right) + \left( {a - b} \right) \Rightarrow \tan 2a = \tan \left[ {\left( {a + b} \right) + \left( {a - b} \right)} \right]\\2b = \left( {a + b} \right) - \left( {a - b} \right) \Rightarrow \tan 2b = \tan \left[ {\left( {a + b} \right) - \left( {a - b} \right)} \right]\end{array}\)
\(\begin{array}{l}\tan \left[ {\left( {a + b} \right) + \left( {a - b} \right)} \right] = \frac{{\tan \left( {a + b} \right) + \tan \left( {a - b} \right)}}{{1 - \tan \left( {a + b} \right).\tan \left( {a - b} \right)}} = \frac{{3 + 2}}{{1 - 3.2}} = - 1\\\tan \left[ {\left( {a + b} \right) - \left( {a - b} \right)} \right] = \frac{{\tan \left( {a + b} \right) - \tan \left( {a - b} \right)}}{{1 + \tan \left( {a + b} \right).\tan \left( {a - b} \right)}} = \frac{{3 - 2}}{{1 + 3.2}} = \frac{1}{7}\end{array}\)
Vậy \(\tan 2a = - 1,\,\,\,\tan 2b = \frac{1}{7}\)
Cho: cosa, cosb ≠ 0, chứng minh đẳng thức: \(\frac{\sin\left(a+b\right).\sin\left(a-b\right)}{\cos^2a.\cos^2b}=\tan^2a-\tan^2b\)
Chứng minh trong mọi tam giác ABC ta đều có :
a) \(\tan\frac{A}{2}.\tan\frac{B}{2}+\tan\frac{B}{2}.\tan\frac{C}{2}+\tan\frac{C}{2}.\tan\frac{A}{2}=1\)
b) \(\cot A.\cot B+\cot B.\cot C+\cot C.\cot A=1\)
cho tam giác ABC .chứng minh
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+sin\frac{B}{2}cos\frac{C}{2}cos\frac{A}{2}+sin\frac{C}{2}cos\frac{A}{2}cos\frac{B}{2}=sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}+tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}\)
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
trinh le na
cho bạn 4 năm nữa cũng chưa hiểu đâu
chứng minh
\(\dfrac{sin^2a-sin^2b}{sin^2asin^2b}=\dfrac{tan^2a-tan^2b}{tan^2tan^2b}\)