CM các đẳng thức LG sau:
1)\(\left(cos^4a+sin^4a\right)-2\left(cos^6a+sin^6a\right)=1\)
2) \(\frac{sin^2a+cos^2a}{1+2sina.cosa}=\frac{tana-1}{tana+1}\)
3) \(sin^4a+cos^4a-sin^6a-cos^6a=sin^2a.cos^2a\)
4) \(\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
5) \(\frac{tana}{a-tan^2a}.\frac{cot^2a-1}{cota}=1\)
Chứng minh tam giác ABC cân :
a) tanA + tanB = \(2cot\frac{C}{2}\)
b) \(\frac{cos^2A+cos^2B}{sin^2A+sin^2B}=\frac{1}{2}\left(cot^2A+cot^2B\right)\)
Chứng minh
a) \(sin^4x=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)
b) \(\frac{cos\left(a+b\right)cos\left(a-b\right)}{cos^2a.cos^2b}=1-tan^2a.tan^2b\)
Chứng minh các hệ thức sau :
a) \(\dfrac{1-2\sin^2a}{1+\sin2a}=\dfrac{1-\tan a}{1+\tan a}\)
b) \(\dfrac{\sin a+\sin3a+\sin5a}{\cos a+\cos3a+\cos5a}=\tan3a\)
c) \(\dfrac{\sin^4a-\cos^4a+\cos^2a}{2\left(1-\cos a\right)}=\cos^2\dfrac{a}{2}\)
d) \(\dfrac{\tan2x.\tan x}{\tan2x-\tan x}=\sin2x\)
chứng minh các đẳng thức sau:
1. sin6a.cos6a+sin2a.cos2a=\(\frac{1}{8}\)(1+cos42a)
2.\(\frac{tana-sina}{sin^3a}\) = \(\frac{1}{cos\left(1+cosa\right)}\)
CM BT ko phụ thuộc vào tham số x
\(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
B\(=\frac{tan^2x}{sin^2x.cos^2x}-\left(1+tan^2x\right)^2\)
Chứng minh|
a) \(\frac{1+sin2x}{sinx+cosx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=sinx\)
b) \(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
Chứng minh đẳng thức
\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)=cosx\)
Rút gọn biểu thức \(A=cos\left(x-7\pi\right)-sin\left(x-\frac{5\pi}{2}\right)+tan^2\left(\frac{3\pi}{2}-x\right)-\frac{1}{sin^2\left(7\pi+x\right)}\) với sinx\(\ne\)0