Ôn tập chương VI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Phuong
Xem chi tiết
Hung nguyen
1 tháng 4 2017 lúc 14:50

a/ \(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)

\(\Leftrightarrow-2\cos^2x+2\cos x-2\cos x+2\cos^2x=0\)

\(\Leftrightarrow0=0\) (đúng)

\(\RightarrowĐPCM\)

Hung nguyen
1 tháng 4 2017 lúc 14:53

b/ \(\tan a.\tan b=\dfrac{\tan a+\tan b}{\cot a+\cot b}\)

\(\Leftrightarrow\tan a.\tan b.\left(\cot a+\cot b\right)=\tan a+\tan b\)

\(\Leftrightarrow\tan a.\tan b.\cot a+\tan a.\tan b.\cot b=\tan a+\tan b\)

\(\Leftrightarrow\tan b+\tan a=\tan a+\tan b\) (đúng)

\(\RightarrowĐPCM\)

Tuấn Nguyễn
Xem chi tiết
Hung nguyen
22 tháng 4 2017 lúc 8:42

a/ \(\dfrac{sin^22x+4sin^2x-4}{sin^22x-4sin^2x}=\dfrac{4sin^2xcos^2x-4cos^2x}{4sin^2xcos^2x-4sin^2x}=\dfrac{-cos^4x}{-sin^4x}=cot^4x\)

Nguyễn Tuấn
Xem chi tiết
Hai Yen Ho
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 23:24

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
SUy ra: DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDC}\)

Do đó:ΔADF=ΔEDC

Suy ra: DF=DC

mà DC>DE

nên DF>DE

d: Ta có: ΔBFC cân tại B

mà BD là đường phân giác

nên DB là đường trung trực của FC

Dat Nguyen
Xem chi tiết
Mai Anh Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 5 2022 lúc 0:02

Câu 2: 

c: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nen ΔBAC vuông tại A

a: Xet ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)(hệ thức lượng)

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

Nhi Dương Ngọc Khánh
Xem chi tiết
Hà Vũ Thu
Xem chi tiết
Thao Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 13:40

Sửa đề: AD=AC

a: Xét ΔACE và ΔADE có 

AC=AD

\(\widehat{CAE}=\widehat{DAE}\)

AE chung

DO đó: ΔACE=ΔADE

Suy ra: \(\widehat{CAE}=\widehat{DAE}\)

hay AE là phân giác của góc CAB

b: Ta có: AC=AD

EC=ED

DO đó: AE là đường trung trực của CD

c: ta có: AE là đường trung trực của CD

nên AE\(\perp\)CD tại I

=>ΔAID vuông tại I

=>\(\widehat{ADI}< 90^0\)

=>\(\widehat{CDB}>90^0\)(Do góc ADI và góc CDB là hai góc kề bù)

Xét ΔCDB có \(\widehat{CDB}>90^0\)

nên BC là cạnh lớn nhất

=>BC>CD

Nguyễn Linh Linh
Xem chi tiết