Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thanh Nhàn
Xem chi tiết
Phạm Minh Quang
26 tháng 10 2019 lúc 17:23

\(\sqrt{30-x}-\sqrt{x-5}=\sqrt{x-13}\left(1\right)\)

ĐKXĐ: \(13\le x\le30\)

\(\left(1\right)\Leftrightarrow\sqrt{30-x}=\sqrt{x-13}+\sqrt{x-5}\)

\(\Leftrightarrow30-x=x-13+x-5+2\sqrt{\left(x-13\right)\left(x-5\right)}\)

\(\Leftrightarrow2\sqrt{\left(x-13\right)\left(x-5\right)}=48-3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48-3x\ge0\\4\left(x-13\right)\left(x-5\right)=\left(48-3x\right)^2\end{matrix}\right.\)

+) \(48-3x\ge0\Leftrightarrow3x\le48\Leftrightarrow x\le16\)

+) \(4\left(x-13\right)\left(x-5\right)=\left(48-3x\right)^2\)

\(\Leftrightarrow4x^2-72x+260=2304-288x+9x^2\)

\(\Leftrightarrow5x^2-216x+2044=0\)

△' \(=108^2-2044.5=1444>0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=\frac{108-\sqrt{1444}}{5}\\x_2=\frac{-108-\sqrt{1444}}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_1=14\\x_2=\frac{-146}{5}\end{matrix}\right.\)

Đối chiếu đk thì chỉ có \(x=14\)thỏa mãn

Vậy pt có nghiệm là \(x=14\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 10 2019 lúc 19:55

Gọn nhẹ hơn 1 chút:

ĐKXĐ:...

\(\Leftrightarrow\sqrt{x-13}-1+\sqrt{x-5}-3+4-\sqrt{30-x}=0\)

\(\Leftrightarrow\frac{x-14}{\sqrt{x-13}+1}+\frac{x-14}{\sqrt{x-5}+3}+\frac{x-14}{4+\sqrt{30-x}}=0\)

\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{\sqrt{x-13}+1}+\frac{1}{\sqrt{x-5}+3}+\frac{1}{4+\sqrt{30-x}}\right)=0\)

\(\Leftrightarrow x=14\)

Dễ dàng nhận ra cái ngoặc đằng sau dương

Khách vãng lai đã xóa
asssssssaasawdd
Xem chi tiết
tthnew
12 tháng 3 2021 lúc 14:52

ĐKXĐ: \(-3\le x\le6\)

Trước hết ta chứng minh:

\(\sqrt{x+3}+\sqrt{6-x}\le3\sqrt{2}\)

Mặt khác điều này hiển nhiên do bất đẳng thức Bunyakovski: 

\(VT\le\sqrt{2\left[\left(x+3\right)+\left(6-x\right)\right]}=3\sqrt{2}\)

Đẳng thức xảy ra khi \(x+3=6-x\Leftrightarrow x=\dfrac{3}{2}\)

Mặt khác theo AM-GM: 

\(6\sqrt{2x+6}-2x-13=2\sqrt{9\left(2x+6\right)}-2x-13\le\left[9+\left(2x+6\right)\right]-2x-13=2\)

Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$

Từ đây thu được \(VT\le VP.\)

Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$

Vậy \(S=\left\{\dfrac{3}{2}\right\}\)

Nguyên
Xem chi tiết
Nguyễn Tấn An
13 tháng 7 2018 lúc 15:43

\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13,đkxđ:-1\le x\le7,\Leftrightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2=\left(x^2-6x+13\right)^2\Leftrightarrow7-x+x+1+2\sqrt{\left(7-x\right)\left(x+1\right)}=\left(x^2-6x+13\right)\left(x^2-6x+13\right)\Leftrightarrow8+2\sqrt{7x+8-x^2-x}=x^4-6x^3+13x^2-6x^3+36x^2-78x+13x^2-78x+169\Leftrightarrow8+2\sqrt{-x^2+6x+8}=x^4-12x^3+62x^2-120x+169\Leftrightarrow Bírồi:< \)

Nguyễn Tấn An
13 tháng 7 2018 lúc 15:54

\(Chot=7-x\Rightarrow x=7-t\Rightarrow\sqrt{7-x}=\sqrt{7-7+t}=\sqrt{t}và\sqrt{x+1}=\sqrt{7-t+1}=\sqrt{8-t}vàx^2-6x+13=\left(7-t\right)^2-6\left(7-t\right)+13,tacópt:\sqrt{t}+\sqrt{8-t}=49-14t+t^2-42+6t+13\Leftrightarrow\sqrt{t}+\sqrt{8-t}=t^2-8t+20=t^2-2.4.t+16+4=\left(t-4\right)^2+4\Leftrightarrow\left(\sqrt{t}+\sqrt{8-t}\right)^2=\left[\left(t-4\right)^2+4\right]^2\Leftrightarrow t-t+8+2\sqrt{8t-t^2}=...\left(bítiếp\right)\)

Lê Thị Thục Hiền
17 tháng 8 2019 lúc 22:05

\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\left(đk:-1\le x\le7\right)\)

Với a,b>0 ta AD BĐT: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\) (tự CM nha haha).Dấu "=" xảy ra<=>a=b (1)

AD bđt (1) có:

\(\sqrt{7-x}+\sqrt{x+1}\le2\sqrt{\frac{7-x+x+1}{2}}\)

\(\le2\sqrt{4}\) =4 (*)

Có x2-6x+13=(x-3)2+4 \(\ge4\) (**)

Từ (*),(**) => Dấu bằng xảy ra \(< =>\left\{{}\begin{matrix}7-x=x+1\\x-3=0\end{matrix}\right.\) \(< =>\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)\(< =>x=3\)(tm điều kiện của x)

Vậy x=3

Ly Po
Xem chi tiết
Akai Haruma
24 tháng 12 2018 lúc 18:25

Lời giải:

ĐK: \(x\geq 1\)

Ta có:

\(16x-13\sqrt{x-1}=9\sqrt{x+1}\)

\(\Leftrightarrow 13(x-\sqrt{x-1})+3(x-3\sqrt{x+1})=0\)

\(\Leftrightarrow 13(x-1-\sqrt{x-1}+\frac{1}{4})+3(x+1-3\sqrt{x+1}+\frac{9}{4})=0\)

\(\Leftrightarrow 13(\sqrt{x-1}-\frac{1}{2})^2+3(\sqrt{x+1}-\frac{3}{2})^2=0\)

\((\sqrt{x-1}-\frac{1}{2})^2; (\sqrt{x+1}-\frac{3}{2})^2\geq 0\)

\(\Rightarrow 13(\sqrt{x-1}-\frac{1}{2})^2+3(\sqrt{x+1}-\frac{3}{2})^2\geq 0\)

Dấu "=" xảy ra khi \(\sqrt{x-1}-\frac{1}{2}=\sqrt{x+1}-\frac{3}{2}=0\Rightarrow x=\frac{5}{4}\) (t.m)

Vậy pt có nghiệm duy nhất $x=\frac{5}{4}$

Nguyễn Hoàng Hà
25 tháng 12 2018 lúc 20:10

Bạn ấy chọn điểm rơi x=5454 và mục đích là để làm mất hết ẩn

C2 thêm bớt nhân liên hợp

PT<=>(x−54)(13√x−1+12+9√x+1+32−16)(x−54)(13x−1+12+9x+1+32−16)=0

xét pt13√x−1+12+9√x+1+32=16cónghiệmx=5413x−1+12+9x+1+32=16cónghiệmx=54

Vế trái là hàm nghịch biến vế phải là hằng số nên nghiệm kia là duy nhất

Nguyễn Thị Ngân
Xem chi tiết
alibaba nguyễn
30 tháng 12 2016 lúc 23:09

Ta có:

\(\left(x-1\right)+\frac{1}{4}\ge\sqrt{x-1}\)

\(\Leftrightarrow13\left(x-1\right)+\frac{13}{4}\ge13\sqrt{x-1}\)

\(\Leftrightarrow13x-\frac{39}{4}\ge13\sqrt{x-1}\)(1)

Ta lại có

\(\left(x+1\right)+\frac{9}{4}\ge3\sqrt{x+1}\)

\(3\left(x+1\right)+\frac{27}{4}\ge9\sqrt{x+1}\)

\(\Leftrightarrow3x+\frac{39}{4}\ge9\sqrt{x+1}\)(2)

Cộng (1) và (2) vế theo vế được

\(16x\ge13\sqrt{x-1}+9\sqrt{x+1}\)

Dấu = xảy ra khi

\(\hept{\begin{cases}x-1=\frac{1}{4}\\x+1=\frac{9}{4}\end{cases}}\Leftrightarrow x=\frac{5}{4}\)

Thư Phan
Xem chi tiết
2611
24 tháng 9 2023 lúc 16:14

`-11x+8\sqrt{x}-13=0`        `ĐK: x >= 0`

Đặt `\sqrt{x}=t`  `(t >= 0)`. Khi đó ptr có dạng:

   `-11t^2+8t-13=0`   `(1)`

Ptr `(1)` có: `\Delta'=4^2 -(-11).(-13)=-127 < 0`

   `=>` Ptr `(1)` vô nghiệm.

Vậy ptr đã cho vô nghiệm.

Thư Phan
Xem chi tiết
Vui lòng để tên hiển thị
24 tháng 9 2023 lúc 15:56

`<=> 11x-8sqrtx+13=0`

Đặt `sqrtx=a(a>=0)`.

Phương trình trở thành: `11a^2-8a+13=0`.

Ta có: `Delta = b^2-4ac=8^2-4.11.13=-508<0`.

Vậy nên phương trình vô nghiệm.

Phượng Hoàng
Xem chi tiết
Lê Anh Duy
7 tháng 5 2019 lúc 12:12

ĐK \(-1\le x\le7\)

\(VP=x^2-6x+13=\left(x-3\right)^2+4\ge4\forall-1\le x\le7\)

\((\sqrt{7-x}+\sqrt{x+1})^2\le\left(1+1\right)\left(7-x+x-1\right)=16\)

\(\Rightarrow VT\le\sqrt{16}=4\)

Dấu "= " xảy ra

\(\left\{{}\begin{matrix}x^2-6x+13=4\\\sqrt{7-x}=\sqrt{x+1}\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

Vậy nghiệm của pt là x =3