Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen hong thai
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 11 2021 lúc 15:56

ĐKXĐ: \(x\ge0\)

\(x^2+1+\left(2-m\right)x-2\sqrt{x\left(x^2+1\right)}=0\)

Với \(x=0\) ko phải nghiệm, với \(x>0\) chia 2 vế cho x:

\(\Rightarrow\dfrac{x^2+1}{x}+2-m-2\sqrt{\dfrac{x^2+1}{x}}=0\)

Đặt \(\sqrt{\dfrac{x^2+1}{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2-2t+2=m\)

Xét hàm \(f\left(t\right)=t^2-2t+m\) khi \(t\ge\sqrt{2}\)

\(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=1< \sqrt{2}\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge\sqrt{2}\)

\(\Rightarrow f\left(t\right)\ge f\left(\sqrt{2}\right)=4-2\sqrt{2}\)

\(\Rightarrow\) Pt có nghiệm khi \(m\ge4-2\sqrt{2}\)

Thương Thương
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Lê Ngọc Uyển Diễm
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 23:20

a.

Ta có: \(m^2+1\ne0;\forall m\Rightarrow\) hàm số là hàm bậc nhất với mọi m

b.

\(m^2+1\ge1>0\) ; \(\forall m\Rightarrow\) hàm đồng biến với mọi m

Phương Trần Hồng
Xem chi tiết
Vũ Minh Tuấn
3 tháng 11 2019 lúc 20:38

\(\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\le0\)

Ta có:

\(\left\{{}\begin{matrix}\left|\left(x-2\right)^{2019}\right|\ge0\\\left(y-1\right)^{2020}\ge0\end{matrix}\right.\forall x,y.\)

\(\Rightarrow\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\ge0\) \(\forall x,y.\)

\(\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\le0.\)

\(\Rightarrow\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}=0\)

\(\Rightarrow\left(x-2\right)^{2019}+\left(y-1\right)^{2020}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2019}=0\\\left(y-1\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0+2\\y=0+1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{2;1\right\}.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Vô danh
Xem chi tiết
Minh Hiếu
16 tháng 9 2023 lúc 16:36

\(\left|x-m\right|=25\Leftrightarrow\left[{}\begin{matrix}x=m+25\\x=m-25\end{matrix}\right.\)

\(\left|x\right|\ge2020\Leftrightarrow\left[{}\begin{matrix}x\ge2020\\x\le-2020\end{matrix}\right.\)

+) \(x=m+25\)

Để \(A\cap B=\varnothing\) \(\Leftrightarrow\left\{{}\begin{matrix}m+25>-2020\\m+25< 2020\end{matrix}\right.\)\(\Leftrightarrow-2045< m< 1995\)

+) \(x=m-25\)

Để \(A\cap B=\varnothing\)  \(\Leftrightarrow\left\{{}\begin{matrix}m-25>-2020\\m-25< 2020\end{matrix}\right.\)\(\Leftrightarrow-1995< m< 2045\)

Tạ Duy Long
Xem chi tiết
Nguyễn Ngọc Lộc
19 tháng 7 2020 lúc 21:05

- Ta có : \(x^2-\left(m-2\right)x-3=0\)

- Ta thấy : \(ac=1\left(-3\right)=-3< 0\)

=> Nên phương trình có hai nghiệm phân biệt .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-3\end{matrix}\right.\)

- Ta có : \(\sqrt{x^2_1+2020}-x_1=\sqrt{x^2_2+2020}+x_2\)

=> \(\sqrt{x^2_1+2020}-\sqrt{x^2_2+2020}=x_1+x_2\)

=> \(x^2_1+2020+x_2^2+2020-2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}=x^2_1+x^2_2+2x_1x_2\)

=> \(4046=2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}\)

=> \(4092529=\left(x^2_1+2020\right)\left(x^2_2+2020\right)\)

=> \(x^2_1x^2_2+2020x_1^2+2020x^2_2+4080400=4092528\)

=> \(2020x_1^2+2020x^2_2=12120\)

=> \(x^2_1+x^2_2=6\)

=> \(\left(x_1+x_2\right)^2-2x_1x_2=6\)

=> \(m^2-4m+4-2\left(-3\right)=6\)

=> \(m^2-4m+4=0\)

=> \(m=2\)

Vậy ....

Nguyễn Việt Lâm
19 tháng 7 2020 lúc 21:06

\(x_1x_2=-3< 0\Rightarrow\)pt đã cho có 2 nghiệm trái dấu

\(\Leftrightarrow\sqrt{x_1^2+2020}-x_2=x_1+\sqrt{x_2^2+2020}\)

\(\Rightarrow x_1^2+2020+x_2^2-2x_2\sqrt{x_1^2+2020}=x_1^2+x_2^2+2020+2x_1\sqrt{x_2^2+2020}\)

\(\Rightarrow-x_2\sqrt{x_1^2+2020}=x_1\sqrt{x_2^2+2020}\)

\(\Rightarrow x_2^2\left(x_1^2+2020\right)=x_1^2\left(x_2^2+2020\right)\)

\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\)

\(\Rightarrow x_1+x_2=0\Rightarrow m-2=0\Rightarrow m=2\)

Có thể thế vào tìm nghiệm và thay vào điều kiện đề bài để thử cho chặt chẽ hơn (do các bước biến đổi ko tương đương)

Nguyễn Thị Lan
Xem chi tiết
B.Thị Anh Thơ
7 tháng 1 2020 lúc 23:35

\(2020+2019+...+\left(x+2\right)+\left(x+1\right)+x=2020\)

\(\Leftrightarrow2019+2018+...+\left(x+1\right)+x=0\)

Xét dãy :\(A=2019+...+\left(x+1\right)+x\)

Dãy gồm \(\left(2020-x\right)\) số hạng

Có :\(A=\frac{\left(2019-x\right)\left(2020-x\right)}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2019+x=0\\2020-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2019\\x=2020\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Thị Lan
7 tháng 1 2020 lúc 22:21

Có ai biết làm bài này không vậy? Làm ơn giúp mình với!

Khách vãng lai đã xóa