\(2020+2019+...+\left(x+2\right)+\left(x+1\right)+x=2020\)
\(\Leftrightarrow2019+2018+...+\left(x+1\right)+x=0\)
Xét dãy :\(A=2019+...+\left(x+1\right)+x\)
Dãy gồm \(\left(2020-x\right)\) số hạng
Có :\(A=\frac{\left(2019-x\right)\left(2020-x\right)}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2019+x=0\\2020-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2019\\x=2020\end{matrix}\right.\)
Có ai biết làm bài này không vậy? Làm ơn giúp mình với!