Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenhoangtung
Xem chi tiết
meme
22 tháng 8 2023 lúc 20:42

Để giải phương trình này, ta cần tách các căn bậc hai ra khỏi biểu thức. Hãy xem xét từng phần tử trong phương trình:

√3x^2 - 7x + 3 - √x^2 - 2 = √3x^2 - 5x - 1 - √x^2 - 3x + 4

Để tách căn bậc hai ra khỏi biểu thức, chúng ta có thể đặt:

A = √3x^2 - 7x + 3 B = √x^2 - 2 C = √3x^2 - 5x - 1 D = √x^2 - 3x + 4

Khi đó, phương trình trở thành:

A - B = C - D

Tiếp theo, ta sẽ bình phương cả hai phía của phương trình:

(A - B)^2 = (C - D)^2

(A - B)(A - B) = (C - D)(C - D)

Mở rộng và rút gọn phương trình, ta được:

A^2 - 2AB + B^2 = C^2 - 2CD + D^2

Thay A, B, C, D bằng giá trị đã định nghĩa ban đầu:

(√3x^2 - 7x + 3)^2 - 2(√3x^2 - 7x + 3)(√x^2 - 2) + (√x^2 - 2)^2 = (√3x^2 - 5x - 1)^2 - 2(√3x^2 - 5x - 1)(√x^2 - 3x + 4) + (√x^2 - 3x + 4)^2

Tiếp theo, ta sẽ giải phương trình đã thu gọn:

3x^2 - 7x + 3 - 2√3x^2 - 7x + 3√x^2 - 2 + x^2 - 2x + 1 = 3x^2 - 5x - 1 - 2√3x^2 - 5x - 1√x^2 - 3x + 4 + x^2 - 6x + 9

Rút gọn và sắp xếp lại các thành phần của phương trình, ta được:

(2√3 + 2)√x^2 - 2 - (2√3 + 2)√x^2 - 3x + 4 = -2x + 7

Tiếp theo, ta sẽ loại bỏ các căn bậc hai:

-2√3 - 2 = -2x + 7

Tiếp tục rút gọn và giải phương trình, ta được:

-2√3 = -2x + 9

2x = 9 + 2√3

x = (9 + 2√3) / 2

Vậy, giá trị của x là (9 + 2√3) / 2.

Quỳnh Anh
Xem chi tiết
Băng
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2019 lúc 18:05

ĐKXĐ:...

\(\sqrt{3x^2-5x-1}-\sqrt{3x^2-7x+9}+\sqrt{x^2-2}-\sqrt{x^2-3x+13}=0\)

\(\Leftrightarrow\frac{2\left(x-5\right)}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3\left(x-5\right)}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}\right)=0\)

\(\Leftrightarrow x-5=0\) (ngoặc to phía sau luôn dương)

\(\Rightarrow x=5\)

Băng
6 tháng 3 2019 lúc 0:02
Hoa Phương
Xem chi tiết
tthnew
17 tháng 1 2021 lúc 13:59

ĐKXĐ: \(x\ge\dfrac{1}{3}\)

PT \(\Leftrightarrow2\left(x-\sqrt{3x-1}\right)+\left[\left(2x+1\right)-\sqrt{3x^2+7x}\right]=0\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+1\right)}{x+\sqrt{3x-1}}+\dfrac{\left(2x+1\right)^2-\left(3x^2+7x\right)}{2x+1+\sqrt{3x^2+7x}}=0\)

\(\Leftrightarrow\left(x^2-3x+1\right)\left[\dfrac{2}{x+\sqrt{3x-1}}+\dfrac{1}{2x+1+\sqrt{3x^2+7x}}\right]=0\)

Cái ngoặc to vô nghiệm, đến đây bạn có thể giải.

Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Khổng Tử
Xem chi tiết
Hồng Phúc
6 tháng 1 2021 lúc 12:36

ĐK: \(x\ge1\)

Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow3t=t^2-4\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)

\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)

\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)

\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

Mai Thị Thúy
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Ngô quang minh
Xem chi tiết
nguyễn thu thanh
8 tháng 11 2016 lúc 19:25

vô nghiện

nguyễn thu thanh
8 tháng 11 2016 lúc 19:26

theo mik thì vô no

nguyễn thu thanh
8 tháng 11 2016 lúc 19:37

chắc sai đề

Nguyễn Mary
Xem chi tiết