1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
giải phương trình:
a, \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
b, \(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
c, \(x^2+3x+5=\left(x+3\right).\sqrt{x^2+5}\)
d, \(\sqrt{x^4+x^2+1}+\left(x^2+1\right).\sqrt{3}=3x\sqrt{3}\)
Giai phương trình:
\(\sqrt[3]{x^2}-2\sqrt[3]{x}-\left(x-4\right)\sqrt{x-7}-3x+28=0\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
A=\(\dfrac{x+2}{x-5}\) B=\(\dfrac{3x+1}{2-x}\) C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
Cho biểu thức :
A = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x-3}{\sqrt{x-9}}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{1}{1}\right)\)
a) Rút gọn
b) Tính A khi x = \(4-2\sqrt{3}\)
c) Tìm x để A < -1/2
d) Tìm Min của A
\(\left(\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\frac{9x-1}{\sqrt{3x+1}}\right).\frac{1}{2\sqrt{x}+2x}\)
Giải các phương trình sau
a, \(4x^2-2\sqrt{3}x=1-\sqrt{3}\)
b, \(x^4-7x^2+3=0\)
c, \(\dfrac{2x^2}{x^2-4}-1=\dfrac{1}{2-x}\)
giải hệ pt
\(\left\{{}\begin{matrix}x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\\3x^2-xy^2+4x=1\end{matrix}\right.\)
mau nha cần gấp lắm rồi