Ôn tập hệ hai phương trình bậc nhất hai ẩn

Nguyễn Việt Lâm
Trung tá -
15 tháng 1 lúc 20:30

Nhân 2 vế của giả thiết với \(\sqrt{x^2+2021}-x>0\):

\(\left(\sqrt{x^2+2021}-x\right)\left(x+\sqrt{x^2+2021}\right)\left(y+\sqrt{y^2+2021}\right)=2021\left(\sqrt{x^2+2021}-x\right)\)

\(\Leftrightarrow2021\left(y+\sqrt{y^2+2021}\right)=2021\left(\sqrt{x^2+2021}-x\right)\)

\(\Leftrightarrow y+\sqrt{y^2+2021}=\sqrt{x^2+2021}-x\) (1)

Tương tự, nhân 2 vế giả thiết với \(\sqrt{y^2+2021}-y\) và rút gọn ta được:

\(x+\sqrt{x^2+2021}=\sqrt{y^2+2021}-y\) (2)

Cộng vế với vế (1) và (2):

\(x+y+\sqrt{x^2+2021}+\sqrt{y^2+2021}=\sqrt{x^2+2021}+\sqrt{y^2+2021}-x-y\)

\(\Leftrightarrow2x+2y=0\Rightarrow A=0\)

Bình luận (0)
Nguyễn Lê Phước Thịnh
Thiếu tướng -
9 tháng 1 lúc 20:37

1) Thay \(m=\sqrt{3}+1\) vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}\left(\sqrt{3}+1-1\right)x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\sqrt{3}y=\sqrt{3}\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-y\left(\sqrt{3}+1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-\sqrt{3}y-y=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(-3\sqrt{3}-1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}\\3x-2\sqrt{3}\cdot\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\3x=\sqrt{3}-\dfrac{12+10\sqrt{3}}{13}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\x=\left(\dfrac{13\sqrt{3}-12-10\sqrt{3}}{13}\right)\cdot\dfrac{1}{3}=\dfrac{3\sqrt{3}-12}{13}\cdot\dfrac{1}{3}=\dfrac{\sqrt{3}-4}{13}\end{matrix}\right.\)

Vậy: Khi \(m=\sqrt{3}+1\) thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}-4}{13}\\y=\dfrac{-5+2\sqrt{3}}{13}\end{matrix}\right.\)

 

Bình luận (2)
nguyen thi vang
9 tháng 1 lúc 19:19

\(\left\{{}\begin{matrix}mx-y=5\left(1\right)\\2x+3my=7\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3m^2x-3my=3m5\\2x+3my=7\end{matrix}\right.\)

=> \(x\left(3m^2+2\right)=15m+7\)<=> \(x=\dfrac{15m+7}{3m^2+2}\)

Thay (1) : \(y=mx-5=\dfrac{15m^2+7m}{3m^2+2}-5=\dfrac{7m-10}{3m^2+2}\)

Ta có : \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.< =>\left\{{}\begin{matrix}15m+7>0\\7m-20< 0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m>-\dfrac{7}{15}\\m< \dfrac{10}{7}\end{matrix}\right.\)

=> m\(\in\left(-\dfrac{7}{15};\dfrac{10}{7}\right)\)

 

Bình luận (0)
Trịnh Mai Phương
30 tháng 10 2020 lúc 15:15

\(B=\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{2+\sqrt{x}}=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

a)\(ĐKXĐ:\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

b) Ta có: \(B=\frac{x+\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

Vậy \(B=\frac{\sqrt{x}}{\sqrt{x}-2}\)

Bình luận (0)
Akai Haruma
Thiếu tướng -
30 tháng 10 2020 lúc 15:13

Lời giải: a) ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ x-4\neq 0\\ 2-\sqrt{x}\neq 0\\ 2+\sqrt{x}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 4\end{matrix}\right.\)

b)

\(B=\frac{x}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}=\frac{x}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\)

\(=\frac{x+2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN