Cho A=x^2-2mx+(m+1) tìm m để bt A có gtnn là 11
Cho a,b >=0 thỏa mãn a+b=1. Tìm GTLN, GTNN của \(P=\frac{a}{b+1}+\frac{b}{a+1}\)
cho hpt
\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
a) giải hpt khi m=3
b)tìm các giá trị của m để hpt có ngh duy nhất TM x,y đạt GTLN
Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\) (m là tham số). Tìm các giá trị tham số m để hệ phương trình:
a) Có nghiệm duy nhất
b) Vô nghiệm
c) Vô số nghiệm
Bài 2: Cho hệ phương trình \(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\\4x-y=-2\end{matrix}\right.\) (m là tham số). Tìm các giá trị m nguyên để hệ phương trình có nghiệm duy nhất (x, y) sao cho x và y nguyên.
Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên
bài 1:
tìm m để hpt sau vô nghiệm \(\left\{{}\begin{matrix}x+my=1\\mx+y=2m\end{matrix}\right.\)
bài 2cho hpt\(\left\{{}\begin{matrix}mx-2y=1\\x+ny=-2\end{matrix}\right.\)có nghiệm(x;y).tìm m để hpt trên có nghiệm thỏa mãn x+y=1
tìm m để hpt sau có vô số nghiệm \(\left\{{}\begin{matrix}mx-y=1\\-x+y=-m\end{matrix}\right.\)
cho hệ phương trình \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
tìm m để hệ phương trình co nghiệm duy nhất (x,y) sao cho S=x^2+y^2 đạt GTNN
Bài 4: Cho hệ phương trình mx + 2my = m +1 và x + (m+1)y = 2
a) CM nếu hệ có nghiệm duy nhất (x;y) thì điểm M(x;y) luôn thuộc một đường thẳng cố định.
b) Xác định m để điểm M(x;y) thuộc góc phần tư thứ nhất.
c) Xác định m để điểm M(x;y) thuộc đường tròn có tâm là gộc tọa độ và bán kính bằng \(\sqrt{5}\)
Cho hệ phương trình:
(I) \(\left\{{}\begin{matrix}mx+y=7\\2x-y=-4\end{matrix}\right.\)
Gọi (x;y) là nghiệm của hệ phương trình. Xác định giá trị của m để P = x2 + y2 đạt GTNN. Tính GTNN đó