Pt có nghiệm duy nhất \(\Leftrightarrow m\ne\pm2\)
Khi đó: \(\left\{{}\begin{matrix}mx+4y=10-m\\mx+m^2y=4m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(m^2-4\right)y=5m-10\\x=4-my\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{5}{m+2}\\x=4-\frac{5m}{m+2}=\frac{10}{m+2}-1\end{matrix}\right.\)
\(\Rightarrow S=\left(\frac{10}{m+2}-1\right)^2+\frac{25}{\left(m+2\right)^2}=\frac{125}{\left(m+2\right)^2}-\frac{20}{m+2}+1\)
\(S=125\left(\frac{1}{m+2}-\frac{2}{25}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Dấu "=" xảy ra khi \(\frac{1}{m+2}=\frac{2}{25}\Rightarrow m=\frac{21}{2}\)