\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{1}{2}\left(x^2+1-y^2+y^2+1-x^2\right)=1\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x=\sqrt{1-y^2}\\y=\sqrt{1-x^2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x;y\ge0\\x^2+y^2=1\end{matrix}\right.\)
\(\Rightarrow y^2=1-x^2\)
Thế xuống pt dưới:
\(3x^2-x\left(1-x^2\right)+4x=1\)
\(\Leftrightarrow x^3+3x^2+3x=1\)
\(\Leftrightarrow\left(x+1\right)^3=2\Rightarrow x=\sqrt[3]{2}-1\)
\(\Rightarrow y=\sqrt{1-x^2}=...\)