giải hệ phương trình sau\(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x+2y=1\\4x-\left(\sqrt{2}+1\right)y=3\end{matrix}\right.\)
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
Giải các hệ phương trình sau:
a) \( \left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=\sqrt{2}\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right..\)
giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=11\\\sqrt{x+3}+2\left|y-2\right|=10\end{matrix}\right.\)
giải hpt:
1, \(\left\{{}\begin{matrix}x^2y^2+4=2y^2\\\left(xy+2\right)\left(y-x\right)=x^3y^3\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2-4xy\left(\dfrac{2}{x-y}-1\right)=4\left(4+xy\right)\\\sqrt{x-y}+3\sqrt{2y^2-y+1}=2y^2-x+3\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}x-y-2+\sqrt{y\left(x-y-1\right)+x}=0\\3\sqrt{8-x}-\dfrac{4y}{\sqrt{y+1}+1}=x^2-14y-8\end{matrix}\right.\)
Giai he phuong trinh:
a) \(\left\{{}\begin{matrix}x^2-y^2=1\\4x^2-5xy=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+\sqrt{y+2018}=1\\\sqrt{x+2018}+y=1\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{matrix}\right.\)