\(\left\{{}\begin{matrix}x^2+y^2-xy=2\\x^3=x+y\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy=13\\x^4+y^4+x^2y^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(x^2+y^2\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=13+xy\\\left[\left(x+y\right)^2-2xy\right]^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(13-xy\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\\left(x+y\right)^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) hoặc x+y = -4
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-4\\xy=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
Mọi người có thể giải thích từ dấu tương đương thứ 3 xuống 4. tại sao lại như vậy k?
giải hệ:
\(\left\{{}\begin{matrix}x+2y=7\\x^2+y^2-2xy=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=2\\x^2+y^2+164\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y+xy=-13\\x^2+y^2-x-y=32\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=3\\x^3-y^3=7\end{matrix}\right.\)
Câu 1:
Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):
$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$
$\Leftrightarrow 9y^2-42y+48=0$
$\Leftrightarrow (y-2)(9y-24)=0$
$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$
Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$
Câu 3: Bạn xem lại PT(2) là -x+y đúng không?
Câu 4:
$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$
$\Leftrightarrow 3^3-9xy=7$
$\Leftrightarrow xy=\frac{20}{9}$
Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:
$X^2-3X-\frac{20}{9}=0$
$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị
$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x+xy+y=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)
a, Cộng vế theo vế hai phương trình ta được:
\(x^2+y^2+2xy+x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2+x+y-2=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x+y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x+y=-2\end{matrix}\right.\)
TH1: \(x+y=1\)
\(pt\left(2\right)\Leftrightarrow xy+1=-1\Leftrightarrow xy=-2\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(x+y=-2\)
\(pt\left(2\right)\Leftrightarrow xy-2=-1\Leftrightarrow xy=1\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=-2\\xy=1\end{matrix}\right.\Leftrightarrow x=y=-1\)
b, \(\left\{{}\begin{matrix}x^3-y^3=7\left(x-y\right)\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x^2+y^2+xy=7\end{matrix}\right.\\x^2+y^2=x+y+2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2-x-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=\dfrac{1\pm\sqrt{5}}{2}\)
TH2: \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2=x+y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=7\\\left(x+y\right)^2-2xy-x-y=2\end{matrix}\right.\)
Đặt \(x+y=u;xy=v\)
Hệ trở thành: \(\left\{{}\begin{matrix}u^2-v=7\\u^2-2v-u=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2-2\left(u^2-7\right)-u=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\u^2+u-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-7\\\left[{}\begin{matrix}u=3\\u=-4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\\\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}v=2\\u=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}v=9\\u=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=9\\x+y=-4\end{matrix}\right.\left(vn\right)\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
Giải hệ
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-2y^2=1\\2y^2-3z^2=1\\xy+yz+zx=1\end{matrix}\right.\left(x,y,z\in R\right)}\)
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
ĐKXĐ:...
\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)
Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:
\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)
\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)
\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)
Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)
\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)
\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)
Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)
\(\Rightarrow t-3=0\)
\(\Leftrightarrow t=3\)
\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)
Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)
\(\Leftrightarrow2y^2-1=0\)
\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)
\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)
Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
Trừ theo vế 2 phương trình ta được:
\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)
Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)
\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.
Do đó \(x=y\)
Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy...
Giải hệ phương trình
1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)
4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)
6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)
7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)
8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)
9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)
10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)
12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)
13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)
14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)
15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)
16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)
17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)
18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)
Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ
1,ĐK: \(x,y\ne-2\)
HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)
=> \(2xy\left(x+2\right)\left(y+2\right)=0\)
<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))
<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)
Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2
Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)
2, ĐK: \(y\ne-1\)
HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)
=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)
<=> 6(x+3)=4-x
<=> \(14=-7x\)
<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)
<=>y=1\(\)( tm)
Vậy hpt có một nghiệm duy nhất (-2,1)
3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)
PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)
<=> (x-y)(x+y+1)=0
<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)
Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)
Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))
4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))
<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)
Có \(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).
10.
\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x^2+2xy^2=3\\y^3+y+x\left(2xy-1\right)=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+x^3y-xy^2+xy-y=1\\x^4+y^2-xy\left(2x-1\right)=1\end{matrix}\right.\)
Câu a pt đầu là \(x^2+2xy^2=3\) hay \(x^3+2xy^2=3\) vậy nhỉ? Nhìn \(x^2\) chẳng hợp lý chút nào
b. \(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^4+y^2-2x^2y\right)+xy+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y\right)\left(xy+1\right)+xy+1=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)
Trừ vế cho vế:
\(\left(x^2-y\right)\left(xy+1\right)-\left(x^2-y\right)^2=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left[y\left(x+1\right)+\left(x+1\right)\left(1-x\right)\right]=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(x+1\right)\left(y+1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x^2\\x=-1\\y=x-1\end{matrix}\right.\)
- Với \(y=x^2\) thế xuống pt dưới:
\(x^4+x^4-x^3\left(2x-1\right)=1\Leftrightarrow x^3=1\Leftrightarrow...\)
....
Hai trường hợp còn lại bạn tự thế tương tự
1. \(\left\{{}\begin{matrix}x+xy+y=11\\x^2+y^2-xy-2\left(x+y\right)=-31\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}x^2+4y^2=8\\x+2y=4\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)
Câu 1:
HPT \(\Leftrightarrow \left\{\begin{matrix} (x+y)+xy=11\\ (x+y)^2-3xy-2(x+y)=-31\end{matrix}\right.\)
Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\) thì hệ trở thành:
\( \left\{\begin{matrix} a+b=11\\ a^2-3b-2a=-31\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=11-a\\ a^2-3b-2a+31=0\end{matrix}\right.\)
\(\Rightarrow a^2-3(11-a)-2a+31=0\)
\(\Leftrightarrow a^2+a-2=0\Leftrightarrow (a-1)(a+2)=0\)
\(\Rightarrow \left[\begin{matrix} a=1\\ a=-2\end{matrix}\right.\)
Nếu $a=1\Rightarrow b=11-a=10$
Như vậy $x+y=1; xy=10$
\(\Rightarrow x(1-x)=10\Leftrightarrow x^2-x+10=0\Leftrightarrow (x-\frac{1}{2})^2=-\frac{39}{4}< 0\) (vô lý)
Nếu \(a=-2\Rightarrow b=11-a=13\)
Như vậy $x+y=-2; xy=13$
$\Rightarrow x(-2-x)=13\Leftrightarrow x^2+2x+13=0\Leftrightarrow (x+1)^2=-12< 0$ (vô lý)
Vậy HPT vô nghiệm.
Câu 2:
HPT \(\Leftrightarrow \left\{\begin{matrix} xy-(x-y)=-3\\ (x-y)^2-(x-y)+3xy=6\end{matrix}\right.\)
Đặt \(xy=a; x-y=b\) thì hệ trở thành:
\(\left\{\begin{matrix} a-b=-3\\ b^2-b+3a=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b-3\\ b^2-b+3a-6=0\end{matrix}\right.\)
\(\Rightarrow b^2-b+3(b-3)-6=0\)
\(\Leftrightarrow b^2+2b-15=0\Leftrightarrow (b-3)(b+5)=0\)
\(\Rightarrow \left[\begin{matrix} b=3\\ b=-5\end{matrix}\right.\)
Nếu $b=3=x-y\Rightarrow a=xy=b-3=0$
\(\Rightarrow (x,y)=(0,-3); (3,0)\)
Nếu \(b=x-y=-5\Rightarrow a=xy=b-3=-8\)
\(\Rightarrow (y-5)y=-8\)
\(\Leftrightarrow y^2-5y+8=0\Leftrightarrow (y-2,5)^2=-1,75< 0\) (vô lý)
Vậy $(x,y)=(0,-3)$ hoặc $(3,0)$
Câu 3:
HPT \(\Leftrightarrow \left\{\begin{matrix} x^2+4y^2=8\\ x=4-2y\end{matrix}\right.\Rightarrow (4-2y)^2+4y^2=8\)
\(\Leftrightarrow 8y^2-16y+8=0\Leftrightarrow y^2-2y+1=0\)
\(\Leftrightarrow (y-1)^2=0\Rightarrow y=1\)
Thay $y=1$ có $x=4-2y=2$
Vậy $(x,y)=(2,1)$
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)
2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)
3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)
4/ Cho x,y là nghiệm của hệ phương trình
\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)
Tìm min và max của A=xy
5/cho x,y,z thỏa mãn đk
\(\left\{{}\begin{matrix}xy+yz+xz=1\\x^2+y^2+z^2=2\end{matrix}\right.\)
Chứng minh rằng: \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
6/Ghpt bằng 3 cách\(\left\{{}\begin{matrix}x+y+z=1\\\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
7/Ghpt\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
8/Ghpt\(\left\{{}\begin{matrix}x^2-3y=-2\\y^2-3x=-2\end{matrix}\right.\)
9/Ghpt bằng 2 cách\(\left\{{}\begin{matrix}x+\sqrt{y+3}=3\\y+\sqrt{x+3}=3\end{matrix}\right.\)
10/Ghpt\(\left\{{}\begin{matrix}x+\dfrac{2}{y}=\dfrac{3}{x}\\y+\dfrac{2}{x}=\dfrac{3}{y}\end{matrix}\right.\)
11/Ghpt\(\left\{{}\begin{matrix}\sqrt[3]{3x+5}=y+1\\\sqrt[3]{3y+5}=x+1\end{matrix}\right.\)
12/Ghpt\(\left\{{}\begin{matrix}3x^2y-y^2-2=0\\3y^2x-x^2-2=0\end{matrix}\right.\)
13/Giải các phương trình sau bằng cách đứa về hệ pt đối xứng loại II:
a)\(\left(x^2-3\right)^2-x-3=0\)
b)\(x^2-2=\sqrt{x+2}\)
14/Ghpt:\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2-y^2+xy=1\end{matrix}\right.\)