Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Minh Quang

Giải hệ phương trình

1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)

4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)

6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)

7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)

8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)

9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)

10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)

12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)

13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)

14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)

15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)

16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)

17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)

18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ

Lê Thị Thục Hiền
28 tháng 11 2019 lúc 18:56

1,ĐK: \(x,y\ne-2\)

HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

=> \(2xy\left(x+2\right)\left(y+2\right)=0\)

<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))

<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)

Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2

Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)

2, ĐK: \(y\ne-1\)

HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)

<=> 6(x+3)=4-x

<=> \(14=-7x\)

<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)

<=>y=1\(\)( tm)

Vậy hpt có một nghiệm duy nhất (-2,1)

3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)

PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

<=> (x-y)(x+y+1)=0

<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)

Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))

4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))

<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)

\(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).

Khách vãng lai đã xóa
Võ Hồng Phúc
28 tháng 11 2019 lúc 20:09

10.

\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Khách vãng lai đã xóa
Phạm Minh Quang
28 tháng 11 2019 lúc 12:59
Khách vãng lai đã xóa
Phạm Minh Quang
28 tháng 11 2019 lúc 12:59

giúp với ạ

Khách vãng lai đã xóa
Phạm Minh Quang
28 tháng 11 2019 lúc 13:00

@Võ Hồng Phúc vô giải

Khách vãng lai đã xóa
Võ Hồng Phúc
29 tháng 11 2019 lúc 18:18

13.

\(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+x^2+y^2-10x+10y+50=55\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3=10x-10y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3=2.5\left(x-y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3=2.\left(x^2+y^2\right)\left(x-y\right)\left(1\right)\end{matrix}\right.\)

Từ \(\left(1\right)\) ta có: \(x^3-2x^2y+2xy^2-4y^3=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x^2+2y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=0\\x^2+2y^2=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x^2+y^2=5\\x-2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y^2=5\\x=2y\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x=-2\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x^2+y^2=5\\x^2+2y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\y^2=-5\end{matrix}\right.\text{ vô nghiệm}\)

Vậy hệ pt đã cho có 2 nghiệm \(\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)

Khách vãng lai đã xóa
Võ Hồng Phúc
29 tháng 11 2019 lúc 18:30

12.

\(hpt\Leftrightarrow\left\{{}\begin{matrix}x^2+7=4y^2+4y\\\left(x+y\right)\left(x+2y+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+7=4y^2+4y\\\left[{}\begin{matrix}x=-y\\x=-2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x=-y\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x=-2x-1\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2+7=4y^2+4y\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(y-3\right)\left(y+7\right)=0\\x=-y\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=3\\x=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y=-7\\x=7\end{matrix}\right.\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x=-2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y^2+4y+1+7=4y^2+4y\\x=-2x-1\end{matrix}\right.\text{ vô nghiệm}\)

Vậy hệ pt đã cho có 2 nghiệm ...

Khách vãng lai đã xóa
Võ Hồng Phúc
29 tháng 11 2019 lúc 23:49

\(pt\Leftrightarrow\left\{{}\begin{matrix}x^2-5xy+7xy+6y^2+42-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\7xy+6y^2+42=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\-7y^2+6y^2+42=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y^2+y-42=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\\left(y-6\right)\left(y+7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=6\\x=-6\end{matrix}\right.\\\left\{{}\begin{matrix}y=-7\\x=7\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ pt có hai nghiệm ...

Khách vãng lai đã xóa
Võ Hồng Phúc
1 tháng 12 2019 lúc 14:40

18.

\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\left(1\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow2x^3=4x+4y-x^2y-xy^2\)

\(\Leftrightarrow2x^3=x\left(4-y^2\right)+y\left(4-x^2\right)\left(3\right)\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\y^2=4-x^2\end{matrix}\right.\) Thay vào \(\left(3\right)\), ta được:

\(2x^3=x^3+y^3\)

\(\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay vào \(\left(1\right)\), ta được:

\(x^2=4-x^2\Leftrightarrow2x^2=4\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt{2}\\x=y=-\sqrt{2}\end{matrix}\right.\)

Vậy hệ pt đã cho có 2 nghiệm ...

Khách vãng lai đã xóa
Võ Hồng Phúc
1 tháng 12 2019 lúc 15:09

17.

\(x=\pm y\) không phải là nghiệm của hệ pt nên

\(hpt\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=13\left(x-y\right)\\x^6-y^6=7\left(x^2-y^2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=13\left(x-y\right)\\\left(x^3-y^3\right)\left(x^3+y^3\right)=91\left(x^2-y^2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=13\left(x-y\right)\\13\left(x-y\right)\left(x^3+y^3\right)=91\left(x+y\right)\left(x-y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+xy+y^2\right)=13\left(x-y\right)\\13\left(x-y\right)\left(x+y\right)\left(x^2-xy+y^2\right)=91\left(x+y\right)\left(x-y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^2-xy+y^2=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\x^2+y^2=10\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=10\\\left(x-y\right)^2+2xy=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=16\\\left(x-y\right)^2=4\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\x-y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-4\\x-y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=4\\x-y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-4\\x-y=2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ pt đã cho có 4 nghiệm ...

Khách vãng lai đã xóa
Hỏi toán
9 tháng 9 lúc 21:53

cho hệ phương trình:x^2+y^2+4xy=6 và 2x^2+8=3y+7x


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Tứ Diệp Thảo
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Kun ZERO
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
poppy Trang
Xem chi tiết