Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoài An
Xem chi tiết
Yeutoanhoc
24 tháng 2 2021 lúc 19:49

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

Nguyễn Trần Thành Đạt
24 tháng 2 2021 lúc 19:13

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 20:07

Bài 1: 

a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)

mà \(x^2+2021>0\forall x\)

nên x+3=0

hay x=-3

Vậy: S={-3}

Bài 2: 

b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy: S={3;-3}

Nàng tiên cá
Xem chi tiết
Trang Nguyễn
14 tháng 1 2020 lúc 21:46

Ta có \(-x\left(x+7\right)=\left(x+2\right)\left(x-2\right)\)

\(\Leftrightarrow-x^2-7x=x^2-4\)

\(\Leftrightarrow-2x^2-7x+4=0\)

\(\Leftrightarrow\left(-2x^2-8x\right)+\left(x+4\right)=0\)

\(\Leftrightarrow-2x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(1-2x\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}1-2x=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-4\end{cases}}}\)

Vậy phương trình có tập nghiệm S={-4;1/2}

Khách vãng lai đã xóa
illumina
Xem chi tiết
Ngô Hải Nam
6 tháng 4 2023 lúc 21:29

\(\left(x+1\right)^2+\left|x-7\right|+6=\left(x+2\right)^2\)

\(< =>x^2+2x+1+\left|x-7\right|+6=x^2+4x+4\)

\(< =>\left|x-7\right|=x^2-x^2+4x-2x+4-1-6\)

\(< =>\left|x-7\right|=2x-3\)

\(< =>\left[{}\begin{matrix}x-7=2x-3\\x-7=-2x+3\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x-2x=-3+7\\x+2x=3+7\end{matrix}\right.\\ < =>\left[{}\begin{matrix}-x=4\\3x=10\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-4\\x=\dfrac{10}{3}\end{matrix}\right.\)

Kiều Duy Hiếu
Xem chi tiết
tthnew
17 tháng 1 2021 lúc 19:10

7,3, -6

ĐKXĐ: \(x\ne7;x\ne2\)

BPT \(\Leftrightarrow f\left(x\right)=\dfrac{\left(6-2x\right)^3\left(x+6\right)}{\left(x-7\right)^3}\le0\)

Lập bảng xét dấu ta có:

Từ đây ta thấy \(-6\le x\le3\) hoặc \(x>7\) thỏa mãn bất phương trình ban đầu.

Vậy...

 

2008
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2023 lúc 23:57

=>xy-2x=xy-4x+2y-8 và 2xy+7x-6y-21=2xy+6x-7y-21

=>2x-2y=-8 và x+y=0

=>x-y=-4 và x+y=0

=>2x=-4 và x+y=0

=>x=-2 và y=2

AK-47
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 6 2023 lúc 8:56

a: =>x+3=x-2 hoặc x+3=2-x

=>2x=-1

=>x=-1/2

b: =>3x+7=x-2 hoặc 3x+7=-x+2

=>2x=-9 hoặc 4x=-5

=>x=-5/4 hoặc x=-9/2

c: =>|3x-4|=|2x-5|

=>3x-4=2x-5 hoặc 3x-4=-2x+5

=>x=-1 hoặc x=9/5

Nữ hoàng sến súa là ta
Xem chi tiết
Nguyễn Khánh Toàn
Xem chi tiết
Lương Đại
31 tháng 3 2022 lúc 14:48

bạn tải ảnh về r up lại đi bạn

Lương Đại
31 tháng 3 2022 lúc 15:50

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

Tuấn Kiên Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 12:42

a: =>|x-7|=3-2x

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)

b: =>|2x-3|=4x+9

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)

c: =>3x+5=2-5x hoặc 3x+5=5x-2

=>8x=-3 hoặc -2x=-7

=>x=-3/8 hoặc x=7/2

mynameisbro
Xem chi tiết

a: ĐKXĐ: y<=1/2

\(\left\{{}\begin{matrix}3\left(x-1\right)-\sqrt{1-2y}=1\\\left(x-1\right)+2\sqrt{1-2y}=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6\left(x-1\right)-2\sqrt{1-2y}=2\\\left(x-1\right)+2\sqrt{1-2y}=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7\left(x-1\right)=7\\\left(x-1\right)+2\sqrt{1-2y}=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=1\\2\sqrt{1-2y}=5-1=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\\sqrt{1-2y}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\1-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

b: 

ĐKXĐ: \(x\in R\)

\(\left\{{}\begin{matrix}\sqrt{x^2-2x+1}-3y=7\\2\left|x-1\right|-8y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{\left(x-1\right)^2}-3y=7\\2\left|x-1\right|-8y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left|x-1\right|-3y=7\\2\left|x-1\right|-8y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\left|x-1\right|-6y=14\\2\left|x-1\right|-8y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2y=13\\\left|x-1\right|-3y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{13}{2}\\\left|x-1\right|=3y+7=3\cdot\dfrac{13}{2}+7=\dfrac{39}{2}+7=\dfrac{53}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{13}{2}\\x-1\in\left\{\dfrac{53}{2};-\dfrac{53}{2}\right\}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{13}{2}\\x\in\left\{\dfrac{55}{2};-\dfrac{51}{2}\right\}\end{matrix}\right.\)

c: ĐKXĐ: y>=4

\(\left\{{}\begin{matrix}2\left(x^2-x\right)+\sqrt{y-4}=0\\3\left(x^2-x\right)-2\sqrt{y-4}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4\left(x^2-x\right)+2\sqrt{y-4}=0\\3\left(x^2-x\right)-2\sqrt{y-4}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7\left(x^2-x\right)=-7\\2\left(x^2-x\right)+\sqrt{y-4}=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-x=-1\\\sqrt{y-4}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-x+1=0\\y-4=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vôlý\right)\\y=8\end{matrix}\right.\)

=>\(\left(x,y\right)\in\varnothing\)