Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LuKenz
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 15:20

Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)

\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)

Nguyễn Ngọc Bảo
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
23 tháng 8 2017 lúc 21:49

với đk 0 ≤ x # 1, biểu thức đã cho xác định 

P = (x+2)/(x√x-1) + (√x+1)/(x+√x+1) - (√x+1)/(x-1) 

P = (x+2)/ (√x-1)(x+√x+1) + (√x+1)/ (x+√x+1) - 1/(√x-1) {hđt: x-1 = (√x-1)(√x+1)} 

P = [(x+2) + (√x+1)(√x-1) - (x+√x+1)] / (x√x-1) 

P = (x-√x)/(x√x-1) = (√x-1)√x /(√x-1)(x+√x+1) 

P = √x / (x+√x+1) 
- - - 
ta xem ở trên là biểu thức rút gọn của P, để chứng minh P < 1/3 ta biến đổi tiếp: 

P = 1/ (√x + 1 + 1/√x) 

bđt côsi: √x + 1/√x ≥ 2 ; dấu "=" khi x = 1 nhưng do đk xác định nên ko có dấu "=" 

vậy √x + 1/√x > 2 <=> √x + 1 + 1/√x > 3 <=> P = 1/(√x + 1 + 1/√x) < 1/3 (đpcm) 

bach nhac lam
Xem chi tiết
bach nhac lam
1 tháng 1 2020 lúc 22:39
Khách vãng lai đã xóa
Diệu Huyền
2 tháng 1 2020 lúc 8:11

\(c,\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)

\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x^2-3x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow x=1\)

Hoặc là: \(\Rightarrow\left(x+2\right)\left(x-1\right)\sqrt{3x-2}-2x\left(x-2\right)=0\)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Thơ
10 tháng 1 2020 lúc 23:26

Còn cần nữa không, hôm bữa chị giải ra câu a mà quên béng mất, mấy hôm lại bận làm thuyết trình Tiếng Anh nên bỏ dở.

Giờ mà cần chị cũng chỉ làm được câu a thôi '-'

Khách vãng lai đã xóa
Nguyễn Mai Quỳnh Anh
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
ta thi ngoc anh
7 tháng 10 2019 lúc 19:07

B=\(\frac{x\sqrt{x}-1}{x-1}\)(x>0,x≠1)

=\(\frac{\sqrt{x^3}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:12

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:22

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:29

e/ ĐKXĐ: ...

\(\Leftrightarrow x^2-1+2x\sqrt{\frac{x^2-1}{x}}=3x\)

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{x^2-1}{x}+2\sqrt{\frac{x^2-1}{x}}=3\)

Đặt \(\sqrt{\frac{x^2-1}{x}}=a\ge0\)

\(a^2+2a=3\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=1\Leftrightarrow x^2-1=x\Leftrightarrow x^2-x-1=0\)

f/ ĐKXĐ: ...

\(\Leftrightarrow x^2-6+x\sqrt{\frac{x^2-6}{x}}-6x=0\)

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{x^2-6}{x}+\sqrt{\frac{x^2-6}{x}}-6=0\)

Đặt \(\sqrt{\frac{x^2-6}{x}}=a\ge0\)

\(a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{\frac{x^2-6}{x}}=2\Leftrightarrow x^2-4x-6=0\)

Khách vãng lai đã xóa
Alice dono
Xem chi tiết
Trần Huy tâm
1 tháng 8 2020 lúc 9:33

a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

S = (3;6)

b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)

c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)

d) đkxđ : x khác -1

\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)

e) đk x >= 3/2

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm

f) đk x >= -3/4

\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm

Harry Anderson
Xem chi tiết