giải phương trình: \(\sqrt{2x-1}=x^3-2x^2+2x\)
Giải phương trình:
\(x\sqrt{2x^2+x-3}+2=2x\sqrt{2x-1}+\sqrt{x+3}\)
giải phương trình sau \(2x^3-2x+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.
Giải phương trình và bất phương trình
a) \(3\sqrt{-x^2+x+6}+2\left(2x-1\right)>0\)
b)\(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
Câu b còn 1 cách giải nữa:
Với \(x=0\) không phải nghiệm
Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:
\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)
Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)
Phương trình trở thành:
\(\sqrt{t^2+12}+t=6\)
\(\Leftrightarrow\sqrt{t^2+12}=6-t\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)
\(\Rightarrow t=2\)
\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)
\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)
\(\Rightarrow2x^2-8x+5=0\)
\(\Leftrightarrow...\)
giải phương trình
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a+2xb-2x-ab=0\\ \Leftrightarrow2x\left(b-1\right)-a\left(b-1\right)=0\\ \Leftrightarrow\left(2x-a\right)\left(b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=a\\b=1\end{matrix}\right.\)
Với \(2x=a\Leftrightarrow x+3=4x^2\left(x\ge0\right)\Leftrightarrow x=1\left(tm\right)\)
Với \(b=1\Leftrightarrow x+1=1\Leftrightarrow x=0\left(tm\right)\)
Vậy PT có nghiệm \(x\in\left\{0;1\right\}\)
Giải phương trình
\(\sqrt{2x^2-2x+1}+\sqrt{2x^2+\left(\sqrt{3}+1\right)x+1}+\sqrt{2x^2-\left(\sqrt{3}-1\right)x+1}=3\)
\(TXĐ:D=R\)
\(pt\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)
\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}=3\sqrt{2}\left(1\right)\)
Chọn \(\hept{\begin{cases}\overrightarrow{u}=\left(1;1-2x\right)\\\overrightarrow{v}=\left(\sqrt{3}x+1;x+1\right)\\\overrightarrow{w}=\left(1-\sqrt{3}x;x+1\right)\end{cases}}\)\(\Rightarrow\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(3;3\right)\)
\(\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|=3\sqrt{2}\)(2)
Ta có: \(\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\le\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)
\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}\ge3\sqrt{2}\)
Dấu "=" xảy ra khi \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng
Từ (1) và (2) suy ra \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng
\(\Leftrightarrow\exists k,l>0\hept{\begin{cases}\overrightarrow{v}=k.\overrightarrow{u}\\\overrightarrow{v}=l.\overrightarrow{w}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{3}x+1=k.1;x+1=k\left(1-2x\right)\\\sqrt{3}x+1=l\left(1-\sqrt{3}x\right);x+1=l\left(x+1\right)\end{cases}}\)
Vậy x = 0
Giải phương trình
\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
\(x+\sqrt{2x+15}=0\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>1\end{matrix}\right.\Leftrightarrow x>=\dfrac{3}{2}\)
\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
=>\(\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>\(\dfrac{2x-3}{x-1}=4\)
=>4(x-1)=2x-3
=>4x-4=2x-3
=>4x-2x=-3+4
=>2x=1
=>\(x=\dfrac{1}{2}\left(loại\right)\)
b: ĐKXĐ: 2x+15>=0
=>x>=-15/2
\(x+\sqrt{2x+15}=0\)
=>\(\sqrt{2x+5}=-x\)
=>\(\left\{{}\begin{matrix}-x>=0\\\left(-x\right)^2=2x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\x^2-2x-5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left(x-1\right)^2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x-1=\sqrt{6}\\x-1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x=\sqrt{6}+1\left(loại\right)\\x=-\sqrt{6}+1\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)
giải phương trình: \(x^2-2x+3=\sqrt{2x^2-x}+\sqrt{1+3x-3x^2}\)
giải phương trình
\(\sqrt{x^2-2x+4}=2x-2\)
\(\sqrt{2x^2-2x+1}=2x-1\)
Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ \(2x - 2\) ≥ 0
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = \(2x - 2\)
⇔ \(x^2-2x+4
\) = \((2x - 2)^2\)
⇔ \(x^2-2x+4
\) = \(4x^2 - 8x + 4 \)
⇔ \(0 = 3x^2 - 6x \)
⇔ 0 = \(3x(x-1)\)
⇔\(\begin{cases}
x=0\\
x-1=0
\end{cases} \)
Mà x ≥ 1
Vậy x ∈ { 1}
Xin lỗi mình lm sai chút :)))
Vì \(\sqrt{x^2-2x+4}
\)≥ 0 ( đúng với ∀ x )
→ 2x − 2 ≥ 0
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4}
\) = 2x−2
⇔ \(x^2 - 2x + 4\)= \((2x-2)^2\)
⇔ 0=\(3x^2 - 6x \)
⇔ 0 = 3x(x−2)
⇔\(\left[\begin{array}{}
x=0\\
x=2
\end{array} \right.\)
Mà x ≥ 1
→ x ∈ {2}
a.
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2\ge0\\x^2-2x+4=\left(2x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x=2\)
Giải phương trình: \(2.\left(x-\sqrt{2x^2+5x-3}\right)=1+x.\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)
\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)
Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm
Vậy PT có nghiệm duy nhất \(x=1\)
Giải phương trình: \(2x^2+2x+1=\left(2x+3\right)\left(\sqrt{x^2+x+1}-1\right)\)