Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Akai Haruma
4 tháng 4 2021 lúc 2:58

Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

9A Lớp
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 13:52

Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+2xb-2x-ab=0\\ \Leftrightarrow2x\left(b-1\right)-a\left(b-1\right)=0\\ \Leftrightarrow\left(2x-a\right)\left(b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=a\\b=1\end{matrix}\right.\)

Với \(2x=a\Leftrightarrow x+3=4x^2\left(x\ge0\right)\Leftrightarrow x=1\left(tm\right)\)

Với \(b=1\Leftrightarrow x+1=1\Leftrightarrow x=0\left(tm\right)\)

Vậy PT có nghiệm \(x\in\left\{0;1\right\}\)

Đặng Hữu Đức
11 tháng 1 2022 lúc 9:08

Scp  iiaoskkkak

Khách vãng lai đã xóa
lê bảo anh
Xem chi tiết
Kiệt Nguyễn
5 tháng 2 2020 lúc 17:10

\(TXĐ:D=R\)

\(pt\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)

\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}=3\sqrt{2}\left(1\right)\)

Chọn \(\hept{\begin{cases}\overrightarrow{u}=\left(1;1-2x\right)\\\overrightarrow{v}=\left(\sqrt{3}x+1;x+1\right)\\\overrightarrow{w}=\left(1-\sqrt{3}x;x+1\right)\end{cases}}\)\(\Rightarrow\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(3;3\right)\)

\(\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|=3\sqrt{2}\)(2)

Ta có: \(\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\le\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)

\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}\ge3\sqrt{2}\)

Dấu "=" xảy ra khi \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng

Từ (1) và (2) suy ra  \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng

\(\Leftrightarrow\exists k,l>0\hept{\begin{cases}\overrightarrow{v}=k.\overrightarrow{u}\\\overrightarrow{v}=l.\overrightarrow{w}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{3}x+1=k.1;x+1=k\left(1-2x\right)\\\sqrt{3}x+1=l\left(1-\sqrt{3}x\right);x+1=l\left(x+1\right)\end{cases}}\)

Vậy x = 0

Khách vãng lai đã xóa
Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:17

a: ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>1\end{matrix}\right.\Leftrightarrow x>=\dfrac{3}{2}\)

\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

=>\(\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>\(\dfrac{2x-3}{x-1}=4\)

=>4(x-1)=2x-3

=>4x-4=2x-3

=>4x-2x=-3+4

=>2x=1

=>\(x=\dfrac{1}{2}\left(loại\right)\)

b: ĐKXĐ: 2x+15>=0

=>x>=-15/2

\(x+\sqrt{2x+15}=0\)

=>\(\sqrt{2x+5}=-x\)

=>\(\left\{{}\begin{matrix}-x>=0\\\left(-x\right)^2=2x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\x^2-2x-5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left(x-1\right)^2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x-1=\sqrt{6}\\x-1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x=\sqrt{6}+1\left(loại\right)\\x=-\sqrt{6}+1\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)

dia fic
Xem chi tiết
HT2k02
5 tháng 4 2021 lúc 21:38

undefined

Bao Gia
Xem chi tiết
Cao Xuân Huy
14 tháng 7 2021 lúc 17:30

Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ \(2x - 2\) ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = \(2x - 2\)
\(x^2-2x+4 \) = \((2x - 2)^2\)
⇔ \(x^2-2x+4 \) = \(4x^2 - 8x + 4 \)
⇔ \(0 = 3x^2 - 6x \)
⇔ 0 = \(3x(x-1)\)
\(\begin{cases} x=0\\ x-1=0 \end{cases} \)
Mà x ≥ 1
Vậy x ∈ { 1}

Cao Xuân Huy
14 tháng 7 2021 lúc 17:39

Xin lỗi mình lm sai chút :)))
Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ 2x − 2 ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = 2x−2
⇔ \(x^2 - 2x + 4\)\((2x-2)^2\)
⇔ 0=\(3x^2 - 6x \)
⇔ 0 = 3x(x−2)
\(\left[\begin{array}{} x=0\\ x=2 \end{array} \right.\)
Mà x ≥ 1
→ x ∈ {2}

Nguyễn Việt Lâm
14 tháng 7 2021 lúc 17:41

a.

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2\ge0\\x^2-2x+4=\left(2x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=2\)

Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 10 2021 lúc 20:07

\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)

Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)

\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)

Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm

Vậy PT có nghiệm duy nhất \(x=1\)

Big City Boy
Xem chi tiết