Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Việt Long
Xem chi tiết
le thai
22 tháng 10 2021 lúc 20:24

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

Nguyễn Hường
Xem chi tiết
Hưng Nguyễn Lê Việt
11 tháng 12 2019 lúc 10:39

a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x

Ta có:

\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\) với mọi \(x\in R\)

b)Ta có:

\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)

Khách vãng lai đã xóa
Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2020 lúc 20:12

a) Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\)(đpcm)

b) Ta có: \(-x^2+2x-4=-\left(x^2-2x+4\right)=-\left(x^2-2x+1+3\right)=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3< 0\forall x\)

hay \(-x^2+2x-4< 0\forall x\)(đpcm)

Khách vãng lai đã xóa
Trinh Yumi
Xem chi tiết
hattori heiji
18 tháng 10 2017 lúc 21:31

a)A= x2-4xy+4y2+3 (x;y\(\in R\) )

A=(x2-4xy+4y2)+3

A=(x-2y)2+3

do (x-2y)2\(\ge0\forall x\);y

=>(x-2y)2+3\(\ge3\)

=> A \(\ge3\)

vậy A >0 với mọi x;y\(\in R\)

Nguyễn Thị Bình Yên
18 tháng 10 2017 lúc 21:34

a)

a)

x2 - 4xy + 4y2 + 3

= x2 - 2.x.2y + (2y)2 + 3

= (x - 2y)2 + 3

Vì (x - 2y)2 \(\ge\) 0 với mọi x, y

\(\Rightarrow\) (x - 2y)2 + 3 > 0 với mọi x, y

Gia Hân Ngô
18 tháng 10 2017 lúc 21:34

a) x2 - 4xy + 4y2 + 3

= (x - 2y)2 + 3 > 0 với mọi x,y

Vì: \(\left\{\begin{matrix} (x - 2y)^{2} \geq 0 & & \\ 3 > 0 & & \end{matrix}\right.\) (chỗ (x - 2y)2 \(\geq \) 0 pn ghi thêm với mọi x nha)

Vậy: x2 - 4xy + 4y2 + 3 > 0 với mọi của x,y

b) 2x - 2x2 - 1

= - (2x2 - 2x + 1)

= - (x2 - 2x + 1 + x2)

= - \(\left [ (x - 1)^{2} + x^{2} \right ]\)

= - (x - 1)2 - x2 < 0 với mọi x

Vì: \(\left\{\begin{matrix} -(x - 1)^{2}< 0 & & \\ - x^{2}< 0 & & \end{matrix}\right.\)

(pn cũng ghi thêm với mọi x nha)

Vậy: 2x - 2x2 - 1 < 0 với mọi x

Nguyễn Huy Phúc
Xem chi tiết
Hoàng Lê Mai Anh
1 tháng 11 2020 lúc 20:02

-x2+2x-4=-(x2-2x+1)-3

=-(x-1)2<0 với mọi x =>-(x-1)2-3<0 với mọi x

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
1 tháng 11 2020 lúc 20:02

Ta có : -x2 + 2x - 4 = -( x2 - 2x + 1 ) - 3

= -( x - 1 )2 - 3 ≤ -3 < 0 ∀ x

=> đpcm

Khách vãng lai đã xóa
Nobi Nobita
1 tháng 11 2020 lúc 20:32

\(-x^2+2x-4=-x^2+2x-1-3\)

\(=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)

Vì \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

hay \(-x^2+2x-4\le-3\)

\(\Rightarrow-x^2+2x-4< 0\forall x\)( đpcm )

Khách vãng lai đã xóa
Nga Phạm
Xem chi tiết
Trịnh Ngọc Hân
31 tháng 10 2017 lúc 20:37

a)\(x^2-4xy+4y^2+3\)

\(=\left(x-2y\right)^2+3\)

Do \(\left(x-2y\right)^2\ge0\forall x,y\)

\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)

\(\left(x-2y\right)^2+3>0\forall x,y\)

=> Đpcm

b)\(2x-2x^2-1\)

\(=-x^2-x^2+2x-1\)

\(=-x^2-\left(x-1\right)^2\)

\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)

=> đpcm

Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.

Chúc bạn học tốt!^^

Hoàng Minh ANh
31 tháng 10 2017 lúc 20:29

sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT

Hoàng Ngân Anh
Xem chi tiết
Trần Minh Hoàng
13 tháng 10 2018 lúc 16:18

Bài 1:

Ta có:

\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Ta có:

\(-\left(4x-x^2-5\right)=-4x+x^2+5=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\)

\(\Rightarrow4x-x^2-5< 0\)

trung
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 20:32

a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)

<=> \(x^2-4x\ge-4>-5\)

b) \(2x^2+4y^2-4x-4xy+5\)

\(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)

\(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)

Annh Phươngg
Xem chi tiết
thanh
17 tháng 10 2018 lúc 21:08

x2−4xy+4y2+3

=(x−2y)2+3

Do (x−2y)2≥0∀x,y

(x−2y)2+3≥0+3∀x,y

(x−2y)2+3>0∀x,y

=> Đpcm

b)2x−2x2−1

=−x2−x2+2x−1

=−x2−(x−1)2

=−[x2+(x−y)2]<0

=> đpcm

Chúc bn học tốt

Nguyễn Lê Phước Thịnh
20 tháng 10 2022 lúc 22:55

8: \(10n^3-23n^2+14n-5⋮2n-3\)

\(\Leftrightarrow10n^3-15n^2-8n^2+12n+2n-3-2⋮2n-3\)

=>\(2n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{2;1;\dfrac{5}{2};\dfrac{1}{2}\right\}\)