Bài 1: Ta có: \(3\sqrt{12}=\sqrt{9}.\sqrt{12}=\sqrt{108}\)
và \(2\sqrt{26}=\sqrt{4}.\sqrt{26}=\sqrt{104}\)
Vì \(108>104\Rightarrow\sqrt{108}>\sqrt{104}\)
Hay \(3\sqrt{12}>2\sqrt{26}\)
Bài 2:
\(\frac{5}{4}\sqrt{12x}-\sqrt{12x}-3=\frac{1}{6}\sqrt{12x}\)
\(\Leftrightarrow\frac{5}{4}\sqrt{12x}-\sqrt{12x}-\frac{1}{6}\sqrt{26}=3\)
\(\Leftrightarrow\frac{1}{12}\sqrt{12x}=3\)
\(\Leftrightarrow\sqrt{\frac{1}{12^2}}.\sqrt{12x}=3\)
\(\Leftrightarrow\sqrt{\frac{x}{12}}=3\)
\(\Leftrightarrow\frac{x}{12}=9\)
\(\Leftrightarrow x=108\)
Bài 3: Với \(x>0;y>0\), ta có:
\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}+\sqrt{y}}=\frac{\sqrt{x^2}.\sqrt{y}-\sqrt{y^2}.\sqrt{x}}{\sqrt{xy}}.\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\frac{\sqrt{x^2y}-\sqrt{xy^2}}{\sqrt{xy}}.\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\frac{\sqrt{xy}\left(\sqrt{y}-\sqrt{x}\right)}{\sqrt{xy}}.\left(\sqrt{y}+\sqrt{x}\right)\)
\(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)\)
\(=y-x\)