Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lu nguyễn
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Mai Anh Phạm
28 tháng 10 2020 lúc 20:49

a)Hỏi đáp Toán

Mai Anh Phạm
28 tháng 10 2020 lúc 20:51

B1

b)Hỏi đáp Toán

Nguyễn Kiều Anh
28 tháng 10 2020 lúc 23:14

@Nguyễn Việt Lâm giúp em với ạ

Buddy
Xem chi tiết
Quoc Tran Anh Le
21 tháng 9 2023 lúc 22:23

a) Với mọi \(x \in \mathbb{R}\) ta có \( - 1 \le cosx \le 1\)

Vậy phương trình \(cosx =  - 3\;\) vô nghiệm.

\(\begin{array}{l}b)\,\;cosx = cos{15^o}\;\\ \Leftrightarrow \left[ \begin{array}{l}x = {15^o} + k{360^o},k \in \mathbb{Z}\\x =  - {15^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = {15^o} + k{360^o}\) hoặc \(x =  - {15^o} + k{360^o},k \in \mathbb{Z}\).

\(\begin{array}{l}c)\;\,cos(x + \frac{\pi }{{12}}) = cos\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\\x + \frac{\pi }{{12}} =  - \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\\x =  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = \frac{\pi }{6} + k2\pi ,\) hoặc \(x =  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 10:36

a, Điều kiện xác định: \(\frac{1}{2}x + \frac{\pi }{4} \ne k\pi  \Leftrightarrow x \ne  - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\)

Ta có: \(cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) =  - 1 \Leftrightarrow cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = \cot \left( { - \frac{\pi }{4}} \right)\)

\( \Leftrightarrow \frac{1}{2}x + \frac{\pi }{4} =  - \frac{\pi }{4} + k\pi  \Leftrightarrow x =  - \pi  + k2\pi ,k \in \mathbb{Z}\,\,(TM).\)

Vậy \(x =  - \pi  + k2\pi ,k \in \mathbb{Z}\,\).

b, Điều kiện xác định: \(3x \ne k\pi  \Leftrightarrow x \ne k\frac{\pi }{3},k \in \mathbb{Z}.\)

\(\;cot3x =  - \frac{{\sqrt 3 }}{3} \Leftrightarrow cot3x = \cot \left( { - \frac{\pi }{3}} \right)\)

\( \Leftrightarrow 3x =  - \frac{\pi }{3} + k\pi  \Leftrightarrow x =  - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\,(TM).\)

Vậy \(x =  - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\).

nanako
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2020 lúc 5:56

1.

\(\Leftrightarrow\frac{\pi}{3}cosx-\frac{8\pi}{3}=k\pi\)

\(\Leftrightarrow cosx=8+3k\)

Do \(-1\le cosx\le1\Rightarrow-1\le8+3k\le1\)

\(\Rightarrow-3\le k\le-\frac{7}{3}\) \(\Rightarrow k=-3\)

\(\Rightarrow cosx=-1\Rightarrow x=\pi+k2\pi\)

2.

\(\Leftrightarrow\frac{\pi}{3}cos2\pi x=\frac{\pi}{6}+k\pi\)

\(\Leftrightarrow cos2\pi x=\frac{1}{2}+3k\)

Do \(-1\le2\pi x\le1\Rightarrow-1\le\frac{1}{2}+3k\le1\)

\(\Rightarrow-\frac{1}{2}\le k\le\frac{1}{6}\Rightarrow k=0\)

\(\Rightarrow cos2\pi x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2\pi x=\frac{\pi}{3}+k2\pi\\2\pi x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}+k\\x=-\frac{1}{6}+k\end{matrix}\right.\)

Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Kiều Anh
29 tháng 9 2020 lúc 23:33

@Nguyễn Việt Lâm giúp em với ạ

Khách vãng lai đã xóa
Nguyễn Việt Lâm
30 tháng 9 2020 lúc 0:03

1.

ĐKXĐ: \(cos\left(4x+\frac{2\pi}{5}\right)+cos\left(3x-\frac{\pi}{4}\right)\ne0\)

\(\Leftrightarrow cos\left(4x+\frac{2\pi}{5}\right)\ne cos\left(3x+\frac{3\pi}{4}\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+\frac{2\pi}{5}\ne3x+\frac{3\pi}{4}+k2\pi\\4x+\frac{2\pi}{5}\ne-3x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{7\pi}{20}+k2\pi\\x\ne-\frac{23\pi}{140}+\frac{k2\pi}{7}\end{matrix}\right.\)

2.

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=arccos\left(\frac{\sqrt{2}}{3}\right)+k2\pi\\\frac{x}{2}=-arccos\left(\frac{\sqrt{2}}{3}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\left(\frac{\sqrt{2}}{3}\right)+k4\pi\\x=-2arccos\left(\frac{\sqrt{2}}{3}\right)+k4\pi\end{matrix}\right.\)

\(\Rightarrow x=4\pi-2arccos\left(\frac{\sqrt{2}}{3}\right)\approx10.41\left(rad\right)\)

Nguyễn Việt Lâm
30 tháng 9 2020 lúc 0:06

3.

a.

\(\Leftrightarrow\left(cos3x-cosx\right)+\left(cos2x-1\right)=0\)

\(\Leftrightarrow-2sin2x.sinx+1-2sin^2x-1=0\)

\(\Leftrightarrow sin2x.sinx+sin^2x=0\)

\(\Leftrightarrow2sin^2x.cosx+sin^2x=0\)

\(\Leftrightarrow sin^2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 8:00

loading...  loading...