Bài 5. Phương trình lượng giác cơ bản

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Giải các phương trình sau:

\(\begin{array}{l}a)\;cosx =  - 3\\b)\;cosx = cos{15^o}\\c)\;cos(x + \frac{\pi }{{12}}) = cos\frac{{3\pi }}{{12}}\end{array}\)

Quoc Tran Anh Le
21 tháng 9 2023 lúc 22:23

a) Với mọi \(x \in \mathbb{R}\) ta có \( - 1 \le cosx \le 1\)

Vậy phương trình \(cosx =  - 3\;\) vô nghiệm.

\(\begin{array}{l}b)\,\;cosx = cos{15^o}\;\\ \Leftrightarrow \left[ \begin{array}{l}x = {15^o} + k{360^o},k \in \mathbb{Z}\\x =  - {15^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = {15^o} + k{360^o}\) hoặc \(x =  - {15^o} + k{360^o},k \in \mathbb{Z}\).

\(\begin{array}{l}c)\;\,cos(x + \frac{\pi }{{12}}) = cos\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\\x + \frac{\pi }{{12}} =  - \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\\x =  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\end{array}\)

Vậy phương trình có nghiệm \(x = \frac{\pi }{6} + k2\pi ,\) hoặc \(x =  - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết