Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quach Bich
Xem chi tiết
Trâm Phạm
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 16:33

a.

Do \(-1\le sin\left(x+\frac{\pi}{6}\right)\le1\Rightarrow1\le y\le5\)

\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{6}\right)=1\)

\(y_{max}=5\) khi \(sin\left(x+\frac{\pi}{6}\right)=-1\)

b.

\(y=2\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]+3\)

\(y=2-4sin^2x.cos^2x+3=5-sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow4\le y\le5\)

\(y_{min}=4\) khi \(sin^22x=1\)

\(y_{max}=5\) khi \(sin^22x=0\)

Nguyễn Việt Lâm
4 tháng 10 2020 lúc 16:35

c.

\(y=2sin2x-1\)

Do \(-1\le sin2x\le1\Rightarrow-3\le y\le1\)

\(y_{min}=-3\) khi \(sin2x=-1\)

\(y_{max}=1\) khi \(sin2x=1\)

d.

\(-1\le sin3x\le1\Rightarrow-1\le y\le3\)

e.

\(0\le sin^22x\le1\Rightarrow1\le y\le4\)

Khách vãng lai đã xóa
Nguyễn Hoàng Long
Xem chi tiết
Thiên Yết
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 7:11

1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)

Vậy...

2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)

\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)

\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)

\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)

Vậy...

3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)

\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)

\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)

Vậy...

4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)

\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)

\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)

Vậy...

5, Xem lại đề

6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)

\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)

Vậy...

Trọng Nghĩa Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 22:57

a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)

=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)

=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)

b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)

c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)

=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)

=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)

=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)

=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)

=>\(x=\dfrac{1}{4}\Omega+k\Omega\)

títtt
Xem chi tiết
Akai Haruma
31 tháng 7 2023 lúc 20:10

Lời giải:

a. 

\(A=\frac{3}{2}-2(\frac{\cos x}{\sin x})^2=\frac{3}{2}-2.(\frac{1}{\tan x})^2=\frac{3}{2}-\frac{1}{2}(\frac{-3}{2})^2=-3\)

b.

\(A=\frac{1}{2}(\frac{\sin x}{\cos x})^2-\frac{5}{2}=2(\frac{1}{\cot x})^2-\frac{5}{2}=2(\frac{5}{3})^2-\frac{5}{2}=\frac{55}{18}\)

Hà Quang Minh
31 tháng 7 2023 lúc 20:19

a, \(A=\dfrac{3sin^2\left(x\right)-cos^2\left(x\right)}{2sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\dfrac{cos^2\left(x\right)}{sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\dfrac{1}{tan^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=-3\)

b, \(A=\dfrac{sin^2\left(x\right)-5cos^2\left(x\right)}{2cos^2\left(x\right)}=\dfrac{1}{2}\dfrac{sin^2\left(x\right)}{cos^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\dfrac{1}{cot^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\left(\dfrac{5}{3}\right)^2-\dfrac{5}{2}=\dfrac{55}{18}\)

Phạm Đắc Quyền
Xem chi tiết
Võ Kim Long
2 tháng 12 lúc 21:16

Hệ phương trình đã cho là:


$$\begin{cases} 2y^3 + 2x\sqrt{1-x} = \sqrt{1-x} - y \quad (1) \\ 2x^2 + 2xy\sqrt{1+x} = y + 1 \quad (2) \end{cases}$$1. Điều kiện xác định (ĐKXĐ)

Để các căn thức có nghĩa, ta cần:


$$\begin{cases} 1 - x \ge 0 \\ 1 + x \ge 0 \end{cases} \implies \begin{cases} x \le 1 \\ x \ge -1 \end{cases}$$


Vậy, ĐKXĐ là: $-1 \le x \le 1$.

2. Biến đổi phương trình (1)

Chuyển các số hạng chứa $\sqrt{1-x}$ về một vế và các số hạng còn lại về vế kia:


$$2y^3 + y = \sqrt{1-x} - 2x\sqrt{1-x}$$ $$2y^3 + y = \sqrt{1-x} (1 - 2x)$$

Nếu đặt $z = \sqrt{1-x}$, ta có $z \ge 0$ và $z^2 = 1-x$, hay $x = 1 - z^2$.

Thay $x$ vào biểu thức $1 - 2x$:


$$1 - 2x = 1 - 2(1 - z^2) = 1 - 2 + 2z^2 = 2z^2 - 1$$


Thay lại vào phương trình (1) đã biến đổi:


$$2y^3 + y = z(2z^2 - 1) = 2z^3 - z$$ $$2y^3 + y = 2z^3 - z$$ $$\iff 2y^3 + y = 2z^3 + (-z)$$

Xét hàm số $f(t) = 2t^3 + t$. Ta có $f'(t) = 6t^2 + 1 > 0$ với mọi $t \in \mathbb{R}$.

$\implies f(t)$ là hàm số đồng biến trên $\mathbb{R}$.

Do đó, từ $f(y) = f(-z)$, suy ra $y = -z$.

Thay $z = \sqrt{1-x}$ trở lại, ta được mối liên hệ:


$$y = -\sqrt{1-x} \quad (*)$$3. Thay thế vào phương trình (2)

Thay $(*)$ vào phương trình $(2)$:


$$2x^2 + 2x(-\sqrt{1-x})\sqrt{1+x} = -\sqrt{1-x} + 1$$

Sử dụng công thức $\sqrt{1-x}\sqrt{1+x} = \sqrt{(1-x)(1+x)} = \sqrt{1-x^2}$ (do $-1 \le x \le 1$):


$$2x^2 - 2x\sqrt{1-x^2} = 1 - \sqrt{1-x}$$

Lưu ý rằng $\sqrt{1-x} \ge 0$, và $y = -\sqrt{1-x} \le 0$, tức là $y$ không dương.

Xét vế trái của $(2)$: $2x^2 + 2xy\sqrt{1+x}$.

Từ $(*)$, ta có $y^2 = 1 - x$, hay $x = 1 - y^2$.

Thay $x = 1 - y^2$ vào $(2)$:


$$2(1 - y^2)^2 + 2(1 - y^2)y\sqrt{1 + (1 - y^2)} = y + 1$$


Đây là một phương trình rất phức tạp. Ta nên biến đổi phương trình $(2)$ một cách khác.

Quay lại phương trình:


$$2x^2 - 2x\sqrt{1-x^2} = 1 - \sqrt{1-x}$$

Ta nhận thấy vế trái có dạng bình phương thiếu. Nhân 2 vế với 2:


$$4x^2 - 4x\sqrt{1-x^2} = 2 - 2\sqrt{1-x}$$ $$2x^2 + (2x^2 - 4x\sqrt{1-x^2}) = 2 - 2\sqrt{1-x}$$

Đây không phải là một hướng đi đơn giản. Ta nên thử phương pháp lượng giác do kết quả có dạng lượng giác.

4. Phương pháp lượng giác

Đặt $x = \cos t$, với $t \in [0, \pi]$ (vì $-1 \le x \le 1$).

Từ $(*)$, ta có $y = -\sqrt{1-x}$.


$$y = -\sqrt{1 - \cos t} = -\sqrt{2\sin^2 \left(\frac{t}{2}\right)}$$


Vì $t \in [0, \pi] \implies \frac{t}{2} \in \left[0, \frac{\pi}{2}\right] \implies \sin \left(\frac{t}{2}\right) \ge 0$.

Nên $y = -\sqrt{2}\sin \left(\frac{t}{2}\right)$.

Thay $x = \cos t$ và $y = -\sqrt{2}\sin \left(\frac{t}{2}\right)$ vào phương trình $(2)$:


$$2x^2 + 2xy\sqrt{1+x} = y + 1$$ $$2\cos^2 t + 2(\cos t) \left(-\sqrt{2}\sin \left(\frac{t}{2}\right)\right) \sqrt{1 + \cos t} = -\sqrt{2}\sin \left(\frac{t}{2}\right) + 1$$

Sử dụng công thức: $\sqrt{1 + \cos t} = \sqrt{2\cos^2 \left(\frac{t}{2}\right)} = \sqrt{2}\cos \left(\frac{t}{2}\right)$ (vì $\frac{t}{2} \in \left[0, \frac{\pi}{2}\right]$).

$$\begin{aligned} 2\cos^2 t + 2\cos t \left(-\sqrt{2}\sin \left(\frac{t}{2}\right)\right) \left(\sqrt{2}\cos \left(\frac{t}{2}\right)\right) &= 1 - \sqrt{2}\sin \left(\frac{t}{2}\right) \\ 2\cos^2 t - 4\cos t \left(\sin \left(\frac{t}{2}\right)\cos \left(\frac{t}{2}\right)\right) &= 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)\end{aligned}$$

Sử dụng công thức $\sin t = 2\sin \left(\frac{t}{2}\right)\cos \left(\frac{t}{2}\right)$:


$$2\cos^2 t - 2\cos t \sin t = 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)$$ $$2\cos^2 t - \sin(2t) = 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)$$

Sử dụng công thức $\cos(2t) = 2\cos^2 t - 1$, hay $2\cos^2 t = 1 + \cos(2t)$:


$$1 + \cos(2t) - \sin(2t) = 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)$$ $$\cos(2t) - \sin(2t) = -\sqrt{2}\sin \left(\frac{t}{2}\right)$$

Sử dụng công thức $a\cos \alpha + b\sin \alpha = \sqrt{a^2 + b^2} \cos(\alpha - \phi)$:


$$\sqrt{1^2 + (-1)^2}\left[\frac{1}{\sqrt{2}}\cos(2t) - \frac{1}{\sqrt{2}}\sin(2t)\right] = -\sqrt{2}\sin \left(\frac{t}{2}\right)$$ $$\sqrt{2}\left[\cos\left(\frac{\pi}{4}\right)\cos(2t) - \sin\left(\frac{\pi}{4}\right)\sin(2t)\right] = -\sqrt{2}\sin \left(\frac{t}{2}\right)$$ $$\sqrt{2}\cos\left(2t + \frac{\pi}{4}\right) = -\sqrt{2}\sin \left(\frac{t}{2}\right)$$

Chia cả hai vế cho $\sqrt{2}$:


$$\cos\left(2t + \frac{\pi}{4}\right) = -\sin \left(\frac{t}{2}\right)$$

Sử dụng công thức $-\sin \alpha = \cos \left(\alpha + \frac{\pi}{2}\right)$:


$$\cos\left(2t + \frac{\pi}{4}\right) = \cos \left(\frac{t}{2} + \frac{\pi}{2}\right)$$

Phương trình có hai trường hợp:

Trường hợp 1:


$$2t + \frac{\pi}{4} = \frac{t}{2} + \frac{\pi}{2} + k2\pi$$ $$\frac{3t}{2} = \frac{\pi}{4} + k2\pi$$ $$t = \frac{\pi}{6} + \frac{4k\pi}{3}$$

Do $t \in [0, \pi]$, ta thay $k = 0$: $t = \frac{\pi}{6}$ (nhận)

Nếu $k = 1$: $t = \frac{\pi}{6} + \frac{4\pi}{3} = \frac{9\pi}{6} > \pi$ (loại).

Với $t = \frac{\pi}{6}$:


$$x = \cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$ $$y = -\sqrt{2}\sin \left(\frac{\pi}{12}\right)$$

Giá trị này không khớp với đáp án $\left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$. Trường hợp này bị loại.

Trường hợp 2:


$$2t + \frac{\pi}{4} = -\left(\frac{t}{2} + \frac{\pi}{2}\right) + k2\pi$$ $$2t + \frac{\pi}{4} = -\frac{t}{2} - \frac{\pi}{2} + k2\pi$$ $$\frac{5t}{2} = -\frac{3\pi}{4} + k2\pi$$ $$t = -\frac{3\pi}{10} + \frac{4k\pi}{5}$$

Do $t \in [0, \pi]$, ta thử các giá trị $k$:

$k = 0$: $t = -\frac{3\pi}{10}$ (loại)$k = 1$: $t = -\frac{3\pi}{10} + \frac{4\pi}{5} = \frac{-3\pi + 8\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}$ (nhận)$k = 2$: $t = -\frac{3\pi}{10} + \frac{8\pi}{5} = \frac{-3\pi + 16\pi}{10} = \frac{13\pi}{10} > \pi$ (loại)

Với $t = \frac{\pi}{2}$:


$$x = \cos \left(\frac{\pi}{2}\right) = 0$$ $$y = -\sqrt{1 - 0} = -1$$


Kiểm tra nghiệm $(x; y) = (0; -1)$ vào hệ ban đầu:


$$(1): 2(-1)^3 + 2(0)\sqrt{1-0} = \sqrt{1-0} - (-1) \implies -2 + 0 = 1 + 1 \implies -2 = 2 \quad \text{(Vô lí)}$$


Trường hợp này cũng bị loại.

5. Xem xét lại đáp án gợi ý

Đáp án gợi ý là: $(x; y) = \left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$.

Nếu đây là nghiệm, ta phải có $y = -\sqrt{1-x}$.

$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{1 - \cos \frac{3\pi}{10}}$

$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{2\sin^2 \frac{3\pi}{20}}$

$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{2}\sin \frac{3\pi}{20}$ (vì $\frac{3\pi}{20} \in \left[0, \frac{\pi}{2}\right] \implies \sin \frac{3\pi}{20} > 0$)

$\iff 2\sqrt{2}\sin \frac{3\pi}{20} = 0 \quad \text{(Vô lí vì } \sin \frac{3\pi}{20} \ne 0 \text{)}$

Kết luận: Có lẽ đáp án gợi ý có sai sót về dấu. Nếu $y$ được cho là âm thì mới thỏa mãn $y = -\sqrt{1-x}$ (như đã chứng minh ở bước 2).

Đáp án đúng phải là:


$$(x; y) = \left(\cos \frac{3\pi}{10}; -\sqrt{2}\sin \frac{3\pi}{20}\right)$$

Nếu chấp nhận đáp án có thể đã bị viết sai dấu là $y = -\sqrt{2}\sin \frac{3\pi}{20}$, ta có:

$t = \frac{3\pi}{10}$.

Thay $t = \frac{3\pi}{10}$ vào phương trình lượng giác:


$$\cos\left(2t + \frac{\pi}{4}\right) = -\sin \left(\frac{t}{2}\right)$$ $$\cos\left(2\cdot\frac{3\pi}{10} + \frac{\pi}{4}\right) = -\sin \left(\frac{3\pi}{20}\right)$$ $$\cos\left(\frac{3\pi}{5} + \frac{\pi}{4}\right) = -\sin \left(\frac{3\pi}{20}\right)$$ $$\cos\left(\frac{12\pi + 5\pi}{20}\right) = -\sin \left(\frac{3\pi}{20}\right)$$ $$\cos\left(\frac{17\pi}{20}\right) = -\sin \left(\frac{3\pi}{20}\right)$$

Sử dụng công thức $\cos(\pi - \alpha) = -\cos \alpha$ và $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin \alpha$:


$$\cos\left(\pi - \frac{3\pi}{20}\right) = -\sin \left(\frac{3\pi}{20}\right)$$ $$-\cos \left(\frac{3\pi}{20}\right) = -\sin \left(\frac{3\pi}{20}\right) \quad \text{(Vô lí vì } \cos \left(\frac{3\pi}{20}\right) \ne \sin \left(\frac{3\pi}{20}\right) \text{)}$$6. Kết luận cuối cùng

Kết luận: Hệ phương trình này có thể có một nghiệm thực duy nhất (hoặc không có nghiệm thực) nhưng nghiệm đó không phải$\left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$.

Thảo Nguyễn Phương
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:30

a/ Bạn coi lại đề bài, pt này có 1 nghiệm rất xấu ko giải được:

\(\Leftrightarrow1-sin^2x-2\sqrt{3}sinx.cosx=sin^3x+1\)

\(\Leftrightarrow sin^3x+sin^2x+2\sqrt{3}sinx.cosx=0\)

\(\Leftrightarrow sinx\left(sin^2x+sinx+2\sqrt{3}cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sin^2x+sinx+2\sqrt{3}cosx=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin^2x+sinx=-2\sqrt{3}cosx\) (\(cosx\le0\))

\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12cos^2x\)

\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12\left(1-sinx\right)\left(1+sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}1+sinx=0\left(2\right)\\sin^2x\left(sinx+1\right)=12\left(1-sinx\right)\left(3\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\) (thỏa mãn)

\(\left(3\right)\Leftrightarrow sin^3x+sin^2x+12sinx-12=0\)

Pt bậc 3 này có nghiệm thực thuộc \(\left(-1;1\right)\) nhưng rất xấu

Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:30

b/

\(\Leftrightarrow\frac{3}{5}sin2x+\frac{4}{5}cos2x=-cos2003x\)

Đặt \(\frac{3}{5}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sin2x.cosa+cos2x.sina=-cos2003x\)

\(\Leftrightarrow sin\left(2x+a\right)=sin\left(2003x-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2003x-\frac{\pi}{2}=2x+a+k2\pi\\2003x-\frac{\pi}{2}=\pi-2x-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4002}+\frac{a}{2001}+\frac{k2\pi}{2001}\\x=\frac{3\pi}{4010}-\frac{a}{2005}+\frac{k2\pi}{2005}\end{matrix}\right.\)

Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:31

c/

\(\Leftrightarrow\sqrt{3}sin\left(x-\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}-x\right)=2sin1972x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin\left(x-\frac{\pi}{3}\right)+\frac{1}{2}cos\left(x-\frac{\pi}{3}\right)=sin1972x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}+\frac{\pi}{6}\right)=sin1972x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin1972x\)

\(\Leftrightarrow\left[{}\begin{matrix}1972x=x-\frac{\pi}{6}+k2\pi\\1972x=\frac{7\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{11826}+\frac{k2\pi}{1971}\\x=\frac{7\pi}{11838}+\frac{k2\pi}{1973}\end{matrix}\right.\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 20:23

tan x=1

=>sin x=cosx

\(A=\dfrac{3sin^2x-sin^2x}{2sin^2x}=\dfrac{3-1}{2}=1\)