2sin^2((pi/3)-2x) + 3sin((4pi/3)-2x) +1=0
Tìm Min,Max của các hàm số
a/ y= 2sin bình x+ cos bình 2x+2
b/ y=4sin2x + 5cos2x -2
c/ y= 3sin(2x-(pi/3))-2cos(2x-(pi/3))+1
d/ y=(2sin bình 3x+4sin3x.cos3x+1)/(sin6x+4cos6x+10)
Giusp mình với ạ!!! Thực sự mình rất cầN!!! Mình cảm ơn!
Tìm GTLN GTNN của hàm số
a, y=3-2sin(x+pi/6)
b, y=2(sin⁴x+cos⁴x) +3
c, y=4sinx.cosx -1
d, y= 2sin.3x +1
e, y= 4-3sin².2x
a.
Do \(-1\le sin\left(x+\frac{\pi}{6}\right)\le1\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{6}\right)=1\)
\(y_{max}=5\) khi \(sin\left(x+\frac{\pi}{6}\right)=-1\)
b.
\(y=2\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]+3\)
\(y=2-4sin^2x.cos^2x+3=5-sin^22x\)
Do \(0\le sin^22x\le1\Rightarrow4\le y\le5\)
\(y_{min}=4\) khi \(sin^22x=1\)
\(y_{max}=5\) khi \(sin^22x=0\)
c.
\(y=2sin2x-1\)
Do \(-1\le sin2x\le1\Rightarrow-3\le y\le1\)
\(y_{min}=-3\) khi \(sin2x=-1\)
\(y_{max}=1\) khi \(sin2x=1\)
d.
\(-1\le sin3x\le1\Rightarrow-1\le y\le3\)
e.
\(0\le sin^22x\le1\Rightarrow1\le y\le4\)
\(\dfrac{2sin^3x+2\sqrt{3}sin^2x.cosx-2sin^2x+cos\left(2x+\dfrac{\pi}{3}\right)}{2cosx-\sqrt{3}}=0\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
1, \(A=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)
2, \(B=cos^6x+2sin^4x.cos^2x+3sin^2x.cos^4x+sin^4x\)
3, \(C=cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
4, \(D=cos^2x+cos^2\left(x+\dfrac{2\pi}{3}\right)+cos^2\left(\dfrac{2\pi}{3}-x\right)\)
5, \(E=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)-\left(sin^8x+cos^8x\right)\)
6, \(F=cos\left(\pi-x\right)+sin\left(\dfrac{-3\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\dfrac{3\pi}{2}-x\right)\)
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
Giải các phương trình sau:
a) \(2sin\left(x+\dfrac{\pi}{5}\right)+\sqrt{3}=0\)
b)\(sin\left(2x-50\text{°}\right)=\dfrac{\sqrt{3}}{2}\)
c)\(\sqrt{3}tan\left(2x-\dfrac{\pi}{3}\right)-1=0\)
a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)
=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)
=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)
b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)
c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)
=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)
=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)
=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)
=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)
=>\(x=\dfrac{1}{4}\Omega+k\Omega\)
cho tanx= - \(\dfrac{2}{3}\) tính A = \(\dfrac{3sin^2x-cos^2x}{2sin^2x}\)
cho cotx = \(\dfrac{3}{5}\) tính A = \(\dfrac{sin^2x-5cos^2x}{2cos^2x}\)
Lời giải:
a.
\(A=\frac{3}{2}-2(\frac{\cos x}{\sin x})^2=\frac{3}{2}-2.(\frac{1}{\tan x})^2=\frac{3}{2}-\frac{1}{2}(\frac{-3}{2})^2=-3\)
b.
\(A=\frac{1}{2}(\frac{\sin x}{\cos x})^2-\frac{5}{2}=2(\frac{1}{\cot x})^2-\frac{5}{2}=2(\frac{5}{3})^2-\frac{5}{2}=\frac{55}{18}\)
a, \(A=\dfrac{3sin^2\left(x\right)-cos^2\left(x\right)}{2sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\dfrac{cos^2\left(x\right)}{sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\dfrac{1}{tan^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=-3\)
b, \(A=\dfrac{sin^2\left(x\right)-5cos^2\left(x\right)}{2cos^2\left(x\right)}=\dfrac{1}{2}\dfrac{sin^2\left(x\right)}{cos^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\dfrac{1}{cot^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\left(\dfrac{5}{3}\right)^2-\dfrac{5}{2}=\dfrac{55}{18}\)
Mọi người giúp tôi giải 2 hệ phương trình này với, khó quá làm mãi không ra, hu hu.
\(\begin{cases}2y^3+2x\sqrt{1-x}=\sqrt{1-x}-y\\2x^2+2xy\sqrt{1+x}=y+1\end{cases}\) Đáp án: (x; y)= (\(\cos\frac{3\pi}{10};\sqrt{2}\sin\frac{3\pi}{20}\)
\(\begin{cases}x^3-3x=\sqrt{y+3}\\x^3+2y^2+7\left(2x-y\right)=y^3+5\left(x^2+2\right)\end{cases}\) Đáp án: (x; y)= (2;1) ; (2cos 4pi/7 ; -1+2cos 4pi/7) ; (2cos 4pi/5 ; -1+2cos 4pi/5)
Hệ phương trình đã cho là:
Để các căn thức có nghĩa, ta cần:
Vậy, ĐKXĐ là: $-1 \le x \le 1$.
2. Biến đổi phương trình (1)Chuyển các số hạng chứa $\sqrt{1-x}$ về một vế và các số hạng còn lại về vế kia:
Nếu đặt $z = \sqrt{1-x}$, ta có $z \ge 0$ và $z^2 = 1-x$, hay $x = 1 - z^2$.
Thay $x$ vào biểu thức $1 - 2x$:
Thay lại vào phương trình (1) đã biến đổi:
Xét hàm số $f(t) = 2t^3 + t$. Ta có $f'(t) = 6t^2 + 1 > 0$ với mọi $t \in \mathbb{R}$.
$\implies f(t)$ là hàm số đồng biến trên $\mathbb{R}$.
Do đó, từ $f(y) = f(-z)$, suy ra $y = -z$.
Thay $z = \sqrt{1-x}$ trở lại, ta được mối liên hệ:
Thay $(*)$ vào phương trình $(2)$:
Sử dụng công thức $\sqrt{1-x}\sqrt{1+x} = \sqrt{(1-x)(1+x)} = \sqrt{1-x^2}$ (do $-1 \le x \le 1$):
Lưu ý rằng $\sqrt{1-x} \ge 0$, và $y = -\sqrt{1-x} \le 0$, tức là $y$ không dương.
Xét vế trái của $(2)$: $2x^2 + 2xy\sqrt{1+x}$.
Từ $(*)$, ta có $y^2 = 1 - x$, hay $x = 1 - y^2$.
Thay $x = 1 - y^2$ vào $(2)$:
Đây là một phương trình rất phức tạp. Ta nên biến đổi phương trình $(2)$ một cách khác.
Quay lại phương trình:
Ta nhận thấy vế trái có dạng bình phương thiếu. Nhân 2 vế với 2:
Đây không phải là một hướng đi đơn giản. Ta nên thử phương pháp lượng giác do kết quả có dạng lượng giác.
4. Phương pháp lượng giácĐặt $x = \cos t$, với $t \in [0, \pi]$ (vì $-1 \le x \le 1$).
Từ $(*)$, ta có $y = -\sqrt{1-x}$.
Vì $t \in [0, \pi] \implies \frac{t}{2} \in \left[0, \frac{\pi}{2}\right] \implies \sin \left(\frac{t}{2}\right) \ge 0$.
Nên $y = -\sqrt{2}\sin \left(\frac{t}{2}\right)$.
Thay $x = \cos t$ và $y = -\sqrt{2}\sin \left(\frac{t}{2}\right)$ vào phương trình $(2)$:
Sử dụng công thức: $\sqrt{1 + \cos t} = \sqrt{2\cos^2 \left(\frac{t}{2}\right)} = \sqrt{2}\cos \left(\frac{t}{2}\right)$ (vì $\frac{t}{2} \in \left[0, \frac{\pi}{2}\right]$).
$$\begin{aligned} 2\cos^2 t + 2\cos t \left(-\sqrt{2}\sin \left(\frac{t}{2}\right)\right) \left(\sqrt{2}\cos \left(\frac{t}{2}\right)\right) &= 1 - \sqrt{2}\sin \left(\frac{t}{2}\right) \\ 2\cos^2 t - 4\cos t \left(\sin \left(\frac{t}{2}\right)\cos \left(\frac{t}{2}\right)\right) &= 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)\end{aligned}$$Sử dụng công thức $\sin t = 2\sin \left(\frac{t}{2}\right)\cos \left(\frac{t}{2}\right)$:
Sử dụng công thức $\cos(2t) = 2\cos^2 t - 1$, hay $2\cos^2 t = 1 + \cos(2t)$:
Sử dụng công thức $a\cos \alpha + b\sin \alpha = \sqrt{a^2 + b^2} \cos(\alpha - \phi)$:
Chia cả hai vế cho $\sqrt{2}$:
Sử dụng công thức $-\sin \alpha = \cos \left(\alpha + \frac{\pi}{2}\right)$:
Phương trình có hai trường hợp:
Trường hợp 1:
Do $t \in [0, \pi]$, ta thay $k = 0$: $t = \frac{\pi}{6}$ (nhận)
Nếu $k = 1$: $t = \frac{\pi}{6} + \frac{4\pi}{3} = \frac{9\pi}{6} > \pi$ (loại).
Với $t = \frac{\pi}{6}$:
Giá trị này không khớp với đáp án $\left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$. Trường hợp này bị loại.
Trường hợp 2:
Do $t \in [0, \pi]$, ta thử các giá trị $k$:
$k = 0$: $t = -\frac{3\pi}{10}$ (loại)$k = 1$: $t = -\frac{3\pi}{10} + \frac{4\pi}{5} = \frac{-3\pi + 8\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}$ (nhận)$k = 2$: $t = -\frac{3\pi}{10} + \frac{8\pi}{5} = \frac{-3\pi + 16\pi}{10} = \frac{13\pi}{10} > \pi$ (loại)Với $t = \frac{\pi}{2}$:
Kiểm tra nghiệm $(x; y) = (0; -1)$ vào hệ ban đầu:
Trường hợp này cũng bị loại.
5. Xem xét lại đáp án gợi ýĐáp án gợi ý là: $(x; y) = \left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$.
Nếu đây là nghiệm, ta phải có $y = -\sqrt{1-x}$.
$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{1 - \cos \frac{3\pi}{10}}$
$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{2\sin^2 \frac{3\pi}{20}}$
$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{2}\sin \frac{3\pi}{20}$ (vì $\frac{3\pi}{20} \in \left[0, \frac{\pi}{2}\right] \implies \sin \frac{3\pi}{20} > 0$)
$\iff 2\sqrt{2}\sin \frac{3\pi}{20} = 0 \quad \text{(Vô lí vì } \sin \frac{3\pi}{20} \ne 0 \text{)}$
Kết luận: Có lẽ đáp án gợi ý có sai sót về dấu. Nếu $y$ được cho là âm thì mới thỏa mãn $y = -\sqrt{1-x}$ (như đã chứng minh ở bước 2).
Đáp án đúng phải là:
Nếu chấp nhận đáp án có thể đã bị viết sai dấu là $y = -\sqrt{2}\sin \frac{3\pi}{20}$, ta có:
$t = \frac{3\pi}{10}$.
Thay $t = \frac{3\pi}{10}$ vào phương trình lượng giác:
Sử dụng công thức $\cos(\pi - \alpha) = -\cos \alpha$ và $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin \alpha$:
Kết luận: Hệ phương trình này có thể có một nghiệm thực duy nhất (hoặc không có nghiệm thực) nhưng nghiệm đó không phải là $\left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$.
cos2x-√3 sin2x=sin3x+1
3sin2x+4cos2x+5cos2003x=0
√3sin(x-\(\frac{\pi}{3}\))\(+sin\left(x+\frac{\pi}{6}\right)-2sin1972x=0\)
\(\sqrt{2}cos\left(\frac{x}{5}-\frac{\pi}{12}\right)-\sqrt{6}sin\left(\frac{x}{5}-\frac{\pi}{12}\right)=2sin\left(\frac{x}{5}+\frac{2\pi}{3}\right)-2sin\left(\frac{3x}{5}+\frac{\pi}{6}\right)\)
a/ Bạn coi lại đề bài, pt này có 1 nghiệm rất xấu ko giải được:
\(\Leftrightarrow1-sin^2x-2\sqrt{3}sinx.cosx=sin^3x+1\)
\(\Leftrightarrow sin^3x+sin^2x+2\sqrt{3}sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sin^2x+sinx+2\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sin^2x+sinx+2\sqrt{3}cosx=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin^2x+sinx=-2\sqrt{3}cosx\) (\(cosx\le0\))
\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12cos^2x\)
\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12\left(1-sinx\right)\left(1+sinx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}1+sinx=0\left(2\right)\\sin^2x\left(sinx+1\right)=12\left(1-sinx\right)\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\) (thỏa mãn)
\(\left(3\right)\Leftrightarrow sin^3x+sin^2x+12sinx-12=0\)
Pt bậc 3 này có nghiệm thực thuộc \(\left(-1;1\right)\) nhưng rất xấu
b/
\(\Leftrightarrow\frac{3}{5}sin2x+\frac{4}{5}cos2x=-cos2003x\)
Đặt \(\frac{3}{5}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow sin2x.cosa+cos2x.sina=-cos2003x\)
\(\Leftrightarrow sin\left(2x+a\right)=sin\left(2003x-\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2003x-\frac{\pi}{2}=2x+a+k2\pi\\2003x-\frac{\pi}{2}=\pi-2x-a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4002}+\frac{a}{2001}+\frac{k2\pi}{2001}\\x=\frac{3\pi}{4010}-\frac{a}{2005}+\frac{k2\pi}{2005}\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{3}sin\left(x-\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}-x\right)=2sin1972x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin\left(x-\frac{\pi}{3}\right)+\frac{1}{2}cos\left(x-\frac{\pi}{3}\right)=sin1972x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}+\frac{\pi}{6}\right)=sin1972x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin1972x\)
\(\Leftrightarrow\left[{}\begin{matrix}1972x=x-\frac{\pi}{6}+k2\pi\\1972x=\frac{7\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{11826}+\frac{k2\pi}{1971}\\x=\frac{7\pi}{11838}+\frac{k2\pi}{1973}\end{matrix}\right.\)
cho tanx=1 tính A = \(\dfrac{3sin^2x-cos^2x}{2sin^2x}\)
tan x=1
=>sin x=cosx
\(A=\dfrac{3sin^2x-sin^2x}{2sin^2x}=\dfrac{3-1}{2}=1\)