Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Đắc Quyền

Mọi người giúp tôi giải 2 hệ phương trình này với, khó quá làm mãi không ra, hu hu.

\(\begin{cases}2y^3+2x\sqrt{1-x}=\sqrt{1-x}-y\\2x^2+2xy\sqrt{1+x}=y+1\end{cases}\) Đáp án: (x; y)= (\(\cos\frac{3\pi}{10};\sqrt{2}\sin\frac{3\pi}{20}\)

\(\begin{cases}x^3-3x=\sqrt{y+3}\\x^3+2y^2+7\left(2x-y\right)=y^3+5\left(x^2+2\right)\end{cases}\) Đáp án: (x; y)= (2;1) ; (2cos 4pi/7 ; -1+2cos 4pi/7) ; (2cos 4pi/5 ; -1+2cos 4pi/5) 

Võ Kim Long
2 tháng 12 lúc 21:16

Hệ phương trình đã cho là:


$$\begin{cases} 2y^3 + 2x\sqrt{1-x} = \sqrt{1-x} - y \quad (1) \\ 2x^2 + 2xy\sqrt{1+x} = y + 1 \quad (2) \end{cases}$$1. Điều kiện xác định (ĐKXĐ)

Để các căn thức có nghĩa, ta cần:


$$\begin{cases} 1 - x \ge 0 \\ 1 + x \ge 0 \end{cases} \implies \begin{cases} x \le 1 \\ x \ge -1 \end{cases}$$


Vậy, ĐKXĐ là: $-1 \le x \le 1$.

2. Biến đổi phương trình (1)

Chuyển các số hạng chứa $\sqrt{1-x}$ về một vế và các số hạng còn lại về vế kia:


$$2y^3 + y = \sqrt{1-x} - 2x\sqrt{1-x}$$ $$2y^3 + y = \sqrt{1-x} (1 - 2x)$$

Nếu đặt $z = \sqrt{1-x}$, ta có $z \ge 0$ và $z^2 = 1-x$, hay $x = 1 - z^2$.

Thay $x$ vào biểu thức $1 - 2x$:


$$1 - 2x = 1 - 2(1 - z^2) = 1 - 2 + 2z^2 = 2z^2 - 1$$


Thay lại vào phương trình (1) đã biến đổi:


$$2y^3 + y = z(2z^2 - 1) = 2z^3 - z$$ $$2y^3 + y = 2z^3 - z$$ $$\iff 2y^3 + y = 2z^3 + (-z)$$

Xét hàm số $f(t) = 2t^3 + t$. Ta có $f'(t) = 6t^2 + 1 > 0$ với mọi $t \in \mathbb{R}$.

$\implies f(t)$ là hàm số đồng biến trên $\mathbb{R}$.

Do đó, từ $f(y) = f(-z)$, suy ra $y = -z$.

Thay $z = \sqrt{1-x}$ trở lại, ta được mối liên hệ:


$$y = -\sqrt{1-x} \quad (*)$$3. Thay thế vào phương trình (2)

Thay $(*)$ vào phương trình $(2)$:


$$2x^2 + 2x(-\sqrt{1-x})\sqrt{1+x} = -\sqrt{1-x} + 1$$

Sử dụng công thức $\sqrt{1-x}\sqrt{1+x} = \sqrt{(1-x)(1+x)} = \sqrt{1-x^2}$ (do $-1 \le x \le 1$):


$$2x^2 - 2x\sqrt{1-x^2} = 1 - \sqrt{1-x}$$

Lưu ý rằng $\sqrt{1-x} \ge 0$, và $y = -\sqrt{1-x} \le 0$, tức là $y$ không dương.

Xét vế trái của $(2)$: $2x^2 + 2xy\sqrt{1+x}$.

Từ $(*)$, ta có $y^2 = 1 - x$, hay $x = 1 - y^2$.

Thay $x = 1 - y^2$ vào $(2)$:


$$2(1 - y^2)^2 + 2(1 - y^2)y\sqrt{1 + (1 - y^2)} = y + 1$$


Đây là một phương trình rất phức tạp. Ta nên biến đổi phương trình $(2)$ một cách khác.

Quay lại phương trình:


$$2x^2 - 2x\sqrt{1-x^2} = 1 - \sqrt{1-x}$$

Ta nhận thấy vế trái có dạng bình phương thiếu. Nhân 2 vế với 2:


$$4x^2 - 4x\sqrt{1-x^2} = 2 - 2\sqrt{1-x}$$ $$2x^2 + (2x^2 - 4x\sqrt{1-x^2}) = 2 - 2\sqrt{1-x}$$

Đây không phải là một hướng đi đơn giản. Ta nên thử phương pháp lượng giác do kết quả có dạng lượng giác.

4. Phương pháp lượng giác

Đặt $x = \cos t$, với $t \in [0, \pi]$ (vì $-1 \le x \le 1$).

Từ $(*)$, ta có $y = -\sqrt{1-x}$.


$$y = -\sqrt{1 - \cos t} = -\sqrt{2\sin^2 \left(\frac{t}{2}\right)}$$


Vì $t \in [0, \pi] \implies \frac{t}{2} \in \left[0, \frac{\pi}{2}\right] \implies \sin \left(\frac{t}{2}\right) \ge 0$.

Nên $y = -\sqrt{2}\sin \left(\frac{t}{2}\right)$.

Thay $x = \cos t$ và $y = -\sqrt{2}\sin \left(\frac{t}{2}\right)$ vào phương trình $(2)$:


$$2x^2 + 2xy\sqrt{1+x} = y + 1$$ $$2\cos^2 t + 2(\cos t) \left(-\sqrt{2}\sin \left(\frac{t}{2}\right)\right) \sqrt{1 + \cos t} = -\sqrt{2}\sin \left(\frac{t}{2}\right) + 1$$

Sử dụng công thức: $\sqrt{1 + \cos t} = \sqrt{2\cos^2 \left(\frac{t}{2}\right)} = \sqrt{2}\cos \left(\frac{t}{2}\right)$ (vì $\frac{t}{2} \in \left[0, \frac{\pi}{2}\right]$).

$$\begin{aligned} 2\cos^2 t + 2\cos t \left(-\sqrt{2}\sin \left(\frac{t}{2}\right)\right) \left(\sqrt{2}\cos \left(\frac{t}{2}\right)\right) &= 1 - \sqrt{2}\sin \left(\frac{t}{2}\right) \\ 2\cos^2 t - 4\cos t \left(\sin \left(\frac{t}{2}\right)\cos \left(\frac{t}{2}\right)\right) &= 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)\end{aligned}$$

Sử dụng công thức $\sin t = 2\sin \left(\frac{t}{2}\right)\cos \left(\frac{t}{2}\right)$:


$$2\cos^2 t - 2\cos t \sin t = 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)$$ $$2\cos^2 t - \sin(2t) = 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)$$

Sử dụng công thức $\cos(2t) = 2\cos^2 t - 1$, hay $2\cos^2 t = 1 + \cos(2t)$:


$$1 + \cos(2t) - \sin(2t) = 1 - \sqrt{2}\sin \left(\frac{t}{2}\right)$$ $$\cos(2t) - \sin(2t) = -\sqrt{2}\sin \left(\frac{t}{2}\right)$$

Sử dụng công thức $a\cos \alpha + b\sin \alpha = \sqrt{a^2 + b^2} \cos(\alpha - \phi)$:


$$\sqrt{1^2 + (-1)^2}\left[\frac{1}{\sqrt{2}}\cos(2t) - \frac{1}{\sqrt{2}}\sin(2t)\right] = -\sqrt{2}\sin \left(\frac{t}{2}\right)$$ $$\sqrt{2}\left[\cos\left(\frac{\pi}{4}\right)\cos(2t) - \sin\left(\frac{\pi}{4}\right)\sin(2t)\right] = -\sqrt{2}\sin \left(\frac{t}{2}\right)$$ $$\sqrt{2}\cos\left(2t + \frac{\pi}{4}\right) = -\sqrt{2}\sin \left(\frac{t}{2}\right)$$

Chia cả hai vế cho $\sqrt{2}$:


$$\cos\left(2t + \frac{\pi}{4}\right) = -\sin \left(\frac{t}{2}\right)$$

Sử dụng công thức $-\sin \alpha = \cos \left(\alpha + \frac{\pi}{2}\right)$:


$$\cos\left(2t + \frac{\pi}{4}\right) = \cos \left(\frac{t}{2} + \frac{\pi}{2}\right)$$

Phương trình có hai trường hợp:

Trường hợp 1:


$$2t + \frac{\pi}{4} = \frac{t}{2} + \frac{\pi}{2} + k2\pi$$ $$\frac{3t}{2} = \frac{\pi}{4} + k2\pi$$ $$t = \frac{\pi}{6} + \frac{4k\pi}{3}$$

Do $t \in [0, \pi]$, ta thay $k = 0$: $t = \frac{\pi}{6}$ (nhận)

Nếu $k = 1$: $t = \frac{\pi}{6} + \frac{4\pi}{3} = \frac{9\pi}{6} > \pi$ (loại).

Với $t = \frac{\pi}{6}$:


$$x = \cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$ $$y = -\sqrt{2}\sin \left(\frac{\pi}{12}\right)$$

Giá trị này không khớp với đáp án $\left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$. Trường hợp này bị loại.

Trường hợp 2:


$$2t + \frac{\pi}{4} = -\left(\frac{t}{2} + \frac{\pi}{2}\right) + k2\pi$$ $$2t + \frac{\pi}{4} = -\frac{t}{2} - \frac{\pi}{2} + k2\pi$$ $$\frac{5t}{2} = -\frac{3\pi}{4} + k2\pi$$ $$t = -\frac{3\pi}{10} + \frac{4k\pi}{5}$$

Do $t \in [0, \pi]$, ta thử các giá trị $k$:

$k = 0$: $t = -\frac{3\pi}{10}$ (loại)$k = 1$: $t = -\frac{3\pi}{10} + \frac{4\pi}{5} = \frac{-3\pi + 8\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}$ (nhận)$k = 2$: $t = -\frac{3\pi}{10} + \frac{8\pi}{5} = \frac{-3\pi + 16\pi}{10} = \frac{13\pi}{10} > \pi$ (loại)

Với $t = \frac{\pi}{2}$:


$$x = \cos \left(\frac{\pi}{2}\right) = 0$$ $$y = -\sqrt{1 - 0} = -1$$


Kiểm tra nghiệm $(x; y) = (0; -1)$ vào hệ ban đầu:


$$(1): 2(-1)^3 + 2(0)\sqrt{1-0} = \sqrt{1-0} - (-1) \implies -2 + 0 = 1 + 1 \implies -2 = 2 \quad \text{(Vô lí)}$$


Trường hợp này cũng bị loại.

5. Xem xét lại đáp án gợi ý

Đáp án gợi ý là: $(x; y) = \left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$.

Nếu đây là nghiệm, ta phải có $y = -\sqrt{1-x}$.

$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{1 - \cos \frac{3\pi}{10}}$

$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{2\sin^2 \frac{3\pi}{20}}$

$\implies \sqrt{2}\sin \frac{3\pi}{20} = -\sqrt{2}\sin \frac{3\pi}{20}$ (vì $\frac{3\pi}{20} \in \left[0, \frac{\pi}{2}\right] \implies \sin \frac{3\pi}{20} > 0$)

$\iff 2\sqrt{2}\sin \frac{3\pi}{20} = 0 \quad \text{(Vô lí vì } \sin \frac{3\pi}{20} \ne 0 \text{)}$

Kết luận: Có lẽ đáp án gợi ý có sai sót về dấu. Nếu $y$ được cho là âm thì mới thỏa mãn $y = -\sqrt{1-x}$ (như đã chứng minh ở bước 2).

Đáp án đúng phải là:


$$(x; y) = \left(\cos \frac{3\pi}{10}; -\sqrt{2}\sin \frac{3\pi}{20}\right)$$

Nếu chấp nhận đáp án có thể đã bị viết sai dấu là $y = -\sqrt{2}\sin \frac{3\pi}{20}$, ta có:

$t = \frac{3\pi}{10}$.

Thay $t = \frac{3\pi}{10}$ vào phương trình lượng giác:


$$\cos\left(2t + \frac{\pi}{4}\right) = -\sin \left(\frac{t}{2}\right)$$ $$\cos\left(2\cdot\frac{3\pi}{10} + \frac{\pi}{4}\right) = -\sin \left(\frac{3\pi}{20}\right)$$ $$\cos\left(\frac{3\pi}{5} + \frac{\pi}{4}\right) = -\sin \left(\frac{3\pi}{20}\right)$$ $$\cos\left(\frac{12\pi + 5\pi}{20}\right) = -\sin \left(\frac{3\pi}{20}\right)$$ $$\cos\left(\frac{17\pi}{20}\right) = -\sin \left(\frac{3\pi}{20}\right)$$

Sử dụng công thức $\cos(\pi - \alpha) = -\cos \alpha$ và $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin \alpha$:


$$\cos\left(\pi - \frac{3\pi}{20}\right) = -\sin \left(\frac{3\pi}{20}\right)$$ $$-\cos \left(\frac{3\pi}{20}\right) = -\sin \left(\frac{3\pi}{20}\right) \quad \text{(Vô lí vì } \cos \left(\frac{3\pi}{20}\right) \ne \sin \left(\frac{3\pi}{20}\right) \text{)}$$6. Kết luận cuối cùng

Kết luận: Hệ phương trình này có thể có một nghiệm thực duy nhất (hoặc không có nghiệm thực) nhưng nghiệm đó không phải$\left(\cos \frac{3\pi}{10}; \sqrt{2}\sin \frac{3\pi}{20}\right)$.


Các câu hỏi tương tự
Thành Công
Xem chi tiết
Nguyễn Phương Thùy
Xem chi tiết
Thành Công
Xem chi tiết
tuấn minh trần
Xem chi tiết
Tiểu Thang Viên (bánh tr...
Xem chi tiết
Baek Ji Heon
Xem chi tiết
Hiền linh
Xem chi tiết
Nguyen Thi Mai
Xem chi tiết
Lightning Farron
Xem chi tiết