Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
lê dạ quynh
Xem chi tiết
Hoàng Phúc
9 tháng 3 2016 lúc 20:41

Bn cần gấp ko?mk lm đc bài này

Nguyễn Văn Hiếu
9 tháng 3 2016 lúc 20:45

sai gì đấy chứ

lê dạ quynh
9 tháng 3 2016 lúc 21:03

mink đang cần gấp các bạn giúp mink nhé

Nguyễn Tiến Đạt
Xem chi tiết
Aeris
Xem chi tiết
Đinh Đức Hùng
2 tháng 2 2018 lúc 22:54

Bài này lớp 7 là khó đấy \(0\le a\le b\le c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\end{cases}\Rightarrow\left(1-a\right)\left(1-b\right)\ge0}\)

\(\Leftrightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\)(*)

Vì \(0\le a\le b\le c\le1\) nên \(\hept{\begin{cases}ab\ge0\\1\ge c\end{cases}\Rightarrow ab+1\ge c}\)Kết hợp với (*) ta được :

 \(2\left(ab+1\right)\ge a+b+c\) \(\Leftrightarrow\frac{1}{ab+1}\le\frac{2}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2}{a+b+c}\)(1)

Chứng minh tương tự \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\text{ }\left(2\right)\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\text{ }\left(3\right)\end{cases}}\)

Cộng vế với vế của (1);(2);(3) ta được :

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)(đpcm)

Trần Nhật Giang
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Đỗ Lê Tú Linh
19 tháng 2 2016 lúc 21:12

*)a=-0,372870255

b=0,69

c=0,89

thỏa mãn bằng 2

*)a=0

b=0,1

c=0,11

thỏa mãn bé hơn 2 mà các số lớn hớn 0 đều lớn hơn a,b,c theo trình tự nên mọi 0<=a<=b<=c<=1 đều thỏa mãn biểu thức đó

t cũng ko biết c/m số dưới dạng biến thế nào

Bá Đạo Sever
Xem chi tiết
Akai Haruma
20 tháng 2 2017 lúc 23:21

Giải:

\(0\leq a,b,c\leq 1\Rightarrow ab,ac,ab\geq abc\)

Do đó mà \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}\)

Giờ chỉ cần chỉ ra \(\frac{a+b+c}{abc+1}\leq 2\). Thật vậy:

Do \(0\leq b,c\leq 1\Rightarrow (b-1)(c-1)\geq 0\Leftrightarrow bc+1\geq b+c\Rightarrow bc+a+1\geq a+b+c\)

Suy ra \( \frac{a+b+c}{abc+1}\leq \frac{bc+a+1}{abc+1}=\frac{bc+a-2abc-1}{abc+1}+2=\frac{(bc-1)(1-a)-abc}{abc+1}+2\)

Ta có \(\left\{\begin{matrix}bc\le1\\a\le1\\abc\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(bc-1\right)\left(1-a\right)\le1\\-abc\le0\end{matrix}\right.\) \(\Rightarrow \frac{(bc-1)(1-a)-abc}{abc+1}+2\leq 2\Rightarrow \frac{a+b+c}{abc+1}\leq 2\)

Chứng minh hoàn tất

Dấu bằng xảy ra khi \((a,b,c)=(0,1,1)\) và hoán vị.

Lightning Farron
20 tháng 2 2017 lúc 20:24

vao cau hoi hay OLM itm

bach nhac lam
Xem chi tiết
tth_new
8 tháng 12 2019 lúc 21:06

Đừng tag níc phụ này.

Mà cái câu 2a) bên dưới gì đó ko có đk gì của a, b, c sao giải đc?

Khách vãng lai đã xóa
Đức Trần Hữu
Xem chi tiết