Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dia fic
Xem chi tiết
HT2k02
5 tháng 4 2021 lúc 21:38

undefined

Nguyễn Thị Bích Thuỳ
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Akai Haruma
4 tháng 4 2021 lúc 2:58

Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.

Anh Phạm
Xem chi tiết
khong có
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2021 lúc 18:00

ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\\dfrac{1}{\sqrt{3x-2}+\sqrt{x+1}}=x+1\left(1\right)\end{matrix}\right.\)

Do \(x\ge\dfrac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT< 1\\VP>1\end{matrix}\right.\) \(\Rightarrow\left(1\right)\) vô nghiệm

Vậy pt có nghiệm duy nhất \(x=\dfrac{3}{2}\)

Ngô Thành Chung
Xem chi tiết
Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Kinder
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 16:44

1.

ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)

\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)

\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2-3b^2-2ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow a=3b\)

\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)

\(\Leftrightarrow x^2-x=9\left(x+1\right)\)

\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 16:48

2.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:

\(x^3+3\left(x^2-4a^2\right)a=0\)

\(\Leftrightarrow x^3+3ax^2-4a^3=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)

Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 5 2021 lúc 14:10

ĐKXĐ: ...

\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)

\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bùi Tuấn Đạt
12 tháng 5 2021 lúc 14:19

ĐKXĐ: x \(\ge\)\(\dfrac{1}{3}\)

pt\(\Leftrightarrow\)x(\(\sqrt{x+1}-\sqrt{3x-1}\))+\(\sqrt{3x-1}\left(\sqrt{3x-1}-\sqrt{x+1}\right)\)=0

  \(\Leftrightarrow\)(\(\sqrt{x+1}-\sqrt{3x-1}\))(1-\(\sqrt{3x-1}\))=0

  \(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{3x-1}\\1=\sqrt{3x-1}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)(t/m x \(\ge\)\(\dfrac{1}{3}\))

Vậy.....................

trương khoa
12 tháng 5 2021 lúc 14:34

 

\(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)(Đk x≥\(\dfrac{1}{3}\))

ta có:\(x\left(3-\sqrt{3x-1}\right)\)

=\(3x-x\sqrt{3x-1}\)

=\(3x-1-x\sqrt{3x-1}+1\)

=\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)

Ta có \(\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)

=\(\sqrt{x^2+2x+1-2+2x^2}-x\sqrt{x+1}+1\)

=\(\sqrt{\left(x+1\right)\left(3x-1\right)}-x\sqrt{x+1}+1\)

=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)

ta có \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)

\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)

\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)=\sqrt{x+1}\left(\sqrt{3x-1}-x\right)\)

⇔​​\(\sqrt{3x-1}=\sqrt{x+1}\)

⇔​\(3x-1=x+1\)

\(2x=2\)

⇔x=1(N)

​Vậy x=1

 

 

 

Minh Anh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 8 2021 lúc 18:28

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2+3x+1}=a\\\sqrt[3]{5x+1}=b\end{matrix}\right.\)

\(\Rightarrow a+a^3-b^3=b\)

\(\Leftrightarrow a-b+\left(a-b\right)\left(a^2+ab+b^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt[3]{x^2+3x+1}=\sqrt[3]{5x+1}\)

\(\Leftrightarrow x^2+3x+1=5x+1\)

\(\Leftrightarrow...\)