\(\dfrac{\dfrac{a-x}{a}+\dfrac{x}{a-x}}{\dfrac{a+x}{a}-\dfrac{x}{a+x}}\)
Giải các pt sau(a,b là các tham số)
a, \(\dfrac{x-a}{b+c}+\dfrac{x-b}{c+a}+\dfrac{x-c}{a+b}=\dfrac{3x}{a+b+c}\)
b, \(\dfrac{a}{x+a}=\dfrac{a-1}{x-1}+\dfrac{1}{x+1}\)
c, \(\dfrac{x-a}{b}+\dfrac{x-b}{a}=\dfrac{b}{x-a}+\dfrac{a}{x-b}\)
a) ĐKXĐ: a + b + c, a + b, b + c, c + a \(\ne\) 0.
Áp d
GIẢI CÁC PHƯƠNG TRÌNH SAU:
a, \(\dfrac{315-x}{101}+\dfrac{313-x}{103}+\dfrac{311-x}{105}+\dfrac{309-x}{107}+4=0\)
b, \(\dfrac{x-a}{a-4}+\dfrac{x+a-1}{a+4}+\dfrac{x-a}{16-a^2}=0\)
c, \(\dfrac{x-b-c}{a}+\dfrac{x-c-a}{b}+\dfrac{x-a-b}{c}=3\)
d, \(\dfrac{x-1}{a-1}+\dfrac{1-x}{1+a}-\dfrac{2x-1}{1-a^4}=\dfrac{2a^2\left(x-1\right)}{a^4-1}\)
Chứng minh đẳng thức
a. \(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}1.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}=\dfrac{2x}{x-1}\)
b. \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
\(a,VT=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x-1}\\ =\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{\left(x+1\right)\left(1-3x\right)}{3x}\right)\cdot\dfrac{x}{x-1}\\ =\left(\dfrac{2}{3x}-\dfrac{2-6x}{3x}\right)\cdot\dfrac{x}{x-1}=\dfrac{6x}{3x}\cdot\dfrac{x}{x-1}=\dfrac{2}{x-1}=VP\left(x\ne0;x\ne1\right)\)
\(b,VT=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}=VP\left(a\ge0;a\ne1\right)\)
Giải các pt với tham số là a,b,c
a , \(\dfrac{x-a}{3}=\dfrac{x+3}{a}-2\) e, \(3x+\dfrac{x}{a}-\dfrac{3a}{a+1}=\dfrac{4ax}{\left(a+1\right)^2}+\dfrac{\left(2a+1\right)x}{a\left(a+1\right)^2}-\dfrac{3a^2}{\left(a+1\right)^3}\)
b, \(\dfrac{x-a}{a+1}+\dfrac{x-1}{a-1}=\dfrac{2a}{1-a^2}\)
c, \(\dfrac{x+a-1}{a+2}+\dfrac{x-a}{a-2}+\dfrac{x-a}{4-a^2}\)
d, \(\dfrac{x-a}{b+c}+\dfrac{x-b}{c+a}+\dfrac{x-c}{a+b}=3\)
minh giai phan d, nha bn :
x-a/b+c + x-b/c+a + x-c/a+b=3
=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0
=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0
=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0
Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0
=>x=a+b+c
x-a/b+c + x-b/c+a + x-c/a+b=3
=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0
=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0
=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0
Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0
=>x=a+b+c
g, x - a / b + c + x - b/ c+a + x - c/ a+b = 3x / a+b+c
\(\dfrac{a}{b}\)x \(\dfrac{7}{15}\) + \(\dfrac{8}{15}\)x \(\dfrac{a}{b}\)+ \(\dfrac{a}{b}\) x 10 - \(\dfrac{a}{b}\)= \(\dfrac{5}{7}\)
\(\Leftrightarrow\dfrac{a}{b}\left(\dfrac{7}{15}+\dfrac{8}{15}+10-1\right)=\dfrac{5}{7}\)
=>a/b=5/70=1/14
A=\(-\dfrac{68}{123}\)x\(-\dfrac{23}{79}\)
B=\(-\dfrac{14}{79}\)x\(-\dfrac{68}{7}\)x\(-\dfrac{46}{123}\)
C=\(-\dfrac{4}{19}\)x\(-\dfrac{3}{19}\)x\(-\dfrac{2}{19}\) ... \(\dfrac{2}{19}\)x\(\dfrac{3}{19}\)x\(\dfrac{4}{19}\)
a)So sánh A,B,C
b)Tính B:A
a) Ta có:
\(A=\dfrac{-68}{123}\cdot\dfrac{-23}{79}=\dfrac{68}{123}\cdot\dfrac{23}{79}\)
\(B=\dfrac{-14}{79}\cdot\dfrac{-68}{7}\cdot\dfrac{-46}{123}=-\left(\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\right)\)
\(C=\dfrac{-4}{19}\cdot\dfrac{-3}{19}\cdot...\cdot\dfrac{0}{19}\cdot...\cdot\dfrac{3}{19}\cdot\dfrac{4}{19}=0\)
Suy ra A là số hữu tỉ dương, B là số hữu tỉ âm và C là 0.
Vậy A > C > B.
b) Ta có:
\(\dfrac{B}{A}=\dfrac{-\left(\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\right)}{\dfrac{68}{123}\cdot\dfrac{23}{79}}=-\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\cdot\dfrac{123}{68}\cdot\dfrac{79}{23}\)
\(\dfrac{B}{A}=-\dfrac{14\cdot68\cdot46\cdot123\cdot79}{79\cdot7\cdot123\cdot68\cdot23}=-\left(2\cdot2\right)=-4\)
Vậy B : A = -4
a) \(\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{x}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
b) \(\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right).\left(\sqrt{a}-\dfrac{1}{a}\right)\)
\(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}+1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}-4}{4-a}\)
RÚT GONJ
2)
ĐK: \(x\ge0;x\ne4\)
Biểu thức trở thành:
\(\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{a-4}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-4}-\dfrac{4\sqrt{a}-4}{a-4}\\ =\dfrac{a+2\sqrt{a}+3\sqrt{a}+6}{a-4}-\dfrac{a-2\sqrt{a}-\sqrt{a}+2}{a-4}-\dfrac{4\sqrt{a}-4}{a-4}\\ =\dfrac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{a-4}\\ =\dfrac{4\sqrt{a}+8}{a-4}\\ =\dfrac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\\ =\dfrac{4}{\sqrt{a}-2}\)
1:
\(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}+1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(=\dfrac{x+2\sqrt{x}-7-\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-1-\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+2\sqrt{x}-8-x-4\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{-4}\)
\(=\dfrac{-2\sqrt{x}-11}{-4}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-3}=\dfrac{\left(2\sqrt{x}+11\right)\left(\sqrt{x}-1\right)}{4\left(\sqrt{x}-3\right)}\)
Rút gọn:
1) \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
2) \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
3) \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
4) \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2-4x-1}{x^2-1}\right).\dfrac{x+2003}{x}\)
5) \(A=\left(\dfrac{5\sqrt{x}}{x-4}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\left(2-\sqrt{x}\right)\)
6) \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
Giúp mình với, cần gấp ạ
2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)
\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)
\(=\dfrac{5\sqrt{x}-15}{3x-59}\)