Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Hằng
Xem chi tiết
Hoang Hung Quan
31 tháng 3 2017 lúc 8:48

ĐK: \(x\in Z\)

a) Giải:

Để \(A\) đạt giá trị lớn nhất

\(\Leftrightarrow\dfrac{2002}{\left|x\right|+2002}\) đạt giá trị lớn nhất

\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)

\(\Rightarrow A_{Max}=\dfrac{2002}{0+2002}=\dfrac{2002}{2002}=1\)

Vậy giá trị lớn nhất của \(A\)\(1\)

b) Để \(B\) đạt giá trị lớn nhất

\(\Leftrightarrow\dfrac{\left|x\right|+2002}{-2003}\) phải lớn nhất

\(\left\{{}\begin{matrix}\left|x\right|+2002>0\\-2003< 0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left|x\right|+2002}{-2003}< 0\)

\(\forall-a< 0\) nếu muốn \(-a\) lớn nhất \(\Leftrightarrow a\) nhỏ nhất

\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)

\(\Rightarrow B_{Max}=\dfrac{0+2002}{-2003}=\dfrac{2002}{-2003}\)

Vậy giá trị lớn nhất của \(B\)\(\dfrac{2002}{-2003}\)

Ngọc Hằng
30 tháng 3 2017 lúc 20:41

mọi người ơi giúp với ạ khocroi

ChaosKiz
30 tháng 3 2017 lúc 21:27

A) x = 0 A = 1

B) x = 1 hoặc -1 B = -1

Họ Và Tên
Xem chi tiết
nguyễn văn quân
Xem chi tiết
tthnew
6 tháng 9 2018 lúc 10:38

\(\dfrac{2002}{\left|x\right|+2003}\) lớn nhất khi \(\left|x\right|+2003\) bé nhất

\(\left|x\right|+2003\ge2003\Leftrightarrow x=0\)

Vậy \(A_{max}=\dfrac{2002}{2003}\Leftrightarrow x=0\)

Đoàn Nhật Nam
Xem chi tiết
Đoàn Nhật Nam
24 tháng 9 2017 lúc 15:57

ak đề bài là tìm giá trị nhỏ nhất của các biểu thức

Thanh Trà
24 tháng 9 2017 lúc 15:57

Đề bài là gì ạ?

Đoàn Nhật Nam
25 tháng 9 2017 lúc 14:25

Help me! @ Nguyễn Thanh Hằng @ Toshiro

Nguyễn Bá Hải
Xem chi tiết
Trần Thị Hương
17 tháng 8 2017 lúc 6:23

a. \(\dfrac{\left(x+1\right)}{10}+\dfrac{\left(x+1\right)}{11}+\dfrac{\left(x+1\right)}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\)

\(x=-1\)

b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\\ \left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\\ \dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\\ x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)\)

\(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\\ \Rightarrow x+2004=0\\ x=-2004\)

Đức Hiếu
17 tháng 8 2017 lúc 6:29

a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(10< 11< 12< 13< 14\) nên \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}>\dfrac{1}{14}\)

\(\Rightarrow\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy.................

b, \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(2000< 2001< 2002< 2003\) nên \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\)

\(\Rightarrow\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}>0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Vậy.................

Chúc bạn học tốt!!!

KYAN Gaming
Xem chi tiết
Yeutoanhoc
3 tháng 7 2021 lúc 20:34

Bài này mình làm lâu rồi á bann sửa dấu `2a+3b<=4` thành `2a+3b=4` nhé!undefined

Nguyễn Ngọc Quỳnh Nga
Xem chi tiết
Vũ Minh Tuấn
5 tháng 12 2019 lúc 18:56

a)

\(A=\left|x-2013\right|+\left|2014-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2013\right|+\left|2014-x\right|\ge\left|x-2013+2014-x\right|\)

\(\Rightarrow A\ge\left|1\right|\)

\(\Rightarrow A\ge1.\)

Dấu '' = '' xảy ra khi:

\(\left\{{}\begin{matrix}x-2013\ge0\\2014-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x\le2014\end{matrix}\right.\Rightarrow2013\le x\le2014.\)

Vậy \(MIN_A=1\) khi \(2013\le x\le2014.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Xử Nữ Chính Là Tôi
Xem chi tiết
Trần Tuấn Minh
14 tháng 10 lúc 21:32

 

????

 

ANH HOÀNG
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 9 2021 lúc 12:38

Bài 1:

a) \(\left|3x-5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))

Bài 2:

a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)

b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)

\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)

\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)

 

Edogawa Conan
18 tháng 9 2021 lúc 12:43

Bài 1:

a) \(\left|3x-5\right|=4\)  (1)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\)    \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)

\(\Leftrightarrow x=-1\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)           \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)

\(\Leftrightarrow x=-2004\)