Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn trần quỳnh trâm
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 21:57

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)

nguyễn trần quỳnh trâm
Xem chi tiết
nguyễn trần quỳnh trâm
Xem chi tiết
Phan Nguyên Anh
Xem chi tiết
Nguyễn Đức Trí
10 tháng 8 2023 lúc 8:26

\(A=3+3^2+3^3+...+3^{60}\)

\(A=3\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)

\(A=3.40+...+3^{57}.40\)

\(A=40\left(3+3^5...+3^{57}\right)\)

mà \(40⋮5\)

\(\Rightarrow A⋮5\left(dpcm\right)\)

Phan Nguyên Anh
10 tháng 8 2023 lúc 8:26

thank bạn nha 

 

 

 

 

 

 

 

\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3+3^4\right)=\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\\ =3.40+3^5.40+...+3^{57}.40\\ =\left(3+3^5+...+3^{57}\right).40⋮5\left(Vì:40⋮5\right)\)

duong le
Xem chi tiết
Kiều Vũ Linh
18 tháng 10 2023 lúc 10:14

Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰

= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)

= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)

= 3.4 + 3³.4 + ... + 3⁹⁹.4

= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4

Vậy A ⋮ 4

duong le
18 tháng 10 2023 lúc 10:25

.

Tuan Cao
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 11 2021 lúc 8:20

\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{58}.13=13\left(3+3^4+...+3^{58}\right)⋮13\)

dieu huong nguyen
Xem chi tiết
ILoveMath
16 tháng 1 2022 lúc 16:52

\(A=3+3^2+3^3+...+3^{60}\)

\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)

\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=\left(3+3^5+...+3^{57}\right)\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40\left(3+3^5+...+3^{57}\right)⋮40\)

Vũ Trọng Hiếu
16 tháng 1 2022 lúc 17:02

 

 

A=3+32+33+...+360A=(3+32+33+34)+(35+36+37+38)+...+(357+358+359+360)

An Bùi
Xem chi tiết
Minh Hiếu
24 tháng 9 2021 lúc 15:58

a) B\(=\) 3 + 32 + 3+ ... + 360 

\(=\)(3+32)+(33+34)+...+(359+360)

\(=\)3(1+3)+33(1+3)+...+359(1+3)

\(=\)(3+1)(3+33+...+359)

\(=\)4(3+33+...+359)⋮4

⇒B⋮4

b) B\(=\)(3+32+33)+...+(358+359+360)

\(=\)30(3+32+33)+...+357(358+359+360)

\(=\)3+32+33(30+33+36+...+357)

\(=\)39(30+33+36+...+357)⋮13

⇒ B⋮13

Long
Xem chi tiết

A = 3 + 32 ....+ 330

A = (3 + 32 + 33) + (34 + 35 + 36) +...+ (328 + 329 + 330)

A = 3.( 1 + 3 + 32) + 34.( 1 + 3 + 32) +...+ 328.(1 + 3 + 32)

A = (1+3+32).( 3 + 34 + ...+ 328)

A = 13.(3 +34 +...+ 328)

13 ⋮ 13 ⇒ A = 13.(3 + 34+...+328) ⋮ 13 (đpcm)

Long
17 tháng 7 2023 lúc 21:50

Làm  ơn  mình đang gấp

 

Trần Đức Minh
17 tháng 7 2023 lúc 21:59

\(A=3^1+3^2+3^3+...+3^{30}\\ \Leftrightarrow3A=3^2+3^3+3^4+...+3^{31}\\ \Leftrightarrow A-3A=3^1+3^2+3^3+...+3^{30}-3^2-3^3-3^4-...-3^{31}\\ \Leftrightarrow-2A=3-3^{31}\\ \Leftrightarrow A=\dfrac{\left(3^{31}-3\right)}{2}\)

Vì \(3^4\)có tận cùng là 1 nên \(3^{31}\)có thể viết dưới dạng \(\left(3^4\right)^7\cdot3^3\).
=> \(3^{31}\)có tận cùng là 7.

=> A có tận cùng là 1.
Mình chỉ giải được đến đây thôi. Hi vọng câu trả lời này có thể giúp bạn một chút.
Học tốt.

Pham Ngoc Diep
Xem chi tiết
Lấp La Lấp Lánh
3 tháng 10 2021 lúc 17:47

\(B=3^0+3^1+3^2...+3^{100}\)

\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)

\(=3^0\times13+3^3\times13+...+3^{98}\times13\)

\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)

kazesawa sora
3 tháng 10 2021 lúc 17:52

B=30+31+32...+3100

=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)

=30×13+33×13+...+398×13

Công ty cổ phần BINGGROUP © 2014 - 2024
Liên hệ: Hà Đức Thọ - Hotline: 0986 557 525 - Email: a@olm.vn hoặc hdtho@hoc24.vn