Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
__HeNry__
Xem chi tiết
Nguyen
24 tháng 8 2019 lúc 21:02

Mk nghĩ ý bn là gtln.ĐK; a>0

\(S\le\frac{18}{\sqrt{6}}=3\sqrt{6}\)

\(S_{max}=3\sqrt{6}\Leftrightarrow a=6\)(TM)

#Walker

Trần Thanh Phương
24 tháng 8 2019 lúc 20:56

Xem lại đề nhé bạn. Biểu thức không có GTNN.

Xem chi tiết
๓เภђ ภوยץễภ ђảเ
4 tháng 10 2020 lúc 19:52

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

Khách vãng lai đã xóa
Kiệt Nguyễn
4 tháng 10 2020 lúc 19:57

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

Khách vãng lai đã xóa
KCLH Kedokatoji
4 tháng 10 2020 lúc 19:59

B3: Áp dụng bđt AM-GM

\(A=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{3\left(a+b\right)}{4\sqrt{ab}}\ge2\sqrt{\frac{a+b}{4\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}+\frac{3\left(a+b\right)}{4\left(\frac{a+b}{2}\right)}\)

\(=1+\frac{3\left(a+b\right)}{2\left(a+b\right)}=1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(a=b>0\)

Khách vãng lai đã xóa
Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 4 2022 lúc 14:22

\(\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)\ge\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)^2\)

\(\Rightarrow\sqrt{a^2+\dfrac{1}{b+c}}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)=\dfrac{1}{\sqrt{17}}\left(4a+\dfrac{1}{\sqrt{b+c}}\right)\)

Tương tự:

\(\sqrt{b^2+\dfrac{1}{a+c}}\ge\dfrac{1}{\sqrt{17}}\left(4b+\dfrac{1}{\sqrt{a+c}}\right)\) ; \(\sqrt{c^2+\dfrac{1}{a+b}}\ge\dfrac{1}{\sqrt{17}}\left(4c+\dfrac{1}{\sqrt{a+b}}\right)\)

Cộng vế:

\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)

\(VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)

Cũng theo Bunhiacopxki:

\(1.\sqrt{a+b}+1.\sqrt{b+c}+1\sqrt{c+a}\le\sqrt{\left(1+1+1\right)\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)

\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\) 

\(VT\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

Harry James Potter
Xem chi tiết
Bui Huyen
3 tháng 8 2019 lúc 21:57

\(M=\frac{8}{3}a+3b+\frac{18}{a}+\frac{21}{b}\)

\(M=2a+\frac{18}{a}+\frac{21}{b}+\frac{7}{3}b+\frac{2}{3}\left(a+b\right)\)

\(M\ge12+14+4=30\)

\("="\Leftrightarrow a=b=3\)

Đặng Công Minh Nghĩa
Xem chi tiết
Đặng Đức Bách
Xem chi tiết
Sakura Kinomoto
Xem chi tiết
Mr Lazy
14 tháng 8 2016 lúc 15:25

Dự đoán các biểu thức đạt GTLN / GTNN tại các mút hoặc tại các biến bằng nhau.

Việc còn lại là nhóm hợp lý sao cho dấu bằng xảy ra giống như dự đoán,

\(A=a^2+\frac{18}{a^2}=\left(\frac{18}{a^2}+\frac{a^2}{72}\right)+\frac{71a^2}{72}\ge2\sqrt{\frac{18}{a^2}.\frac{a^2}{72}}+\frac{71.6^2}{72}=\frac{73}{2}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{18}{a^2}=\frac{a^2}{72}\\a=6\end{cases}}\Leftrightarrow a=6\)

\(B=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}a=\frac{1}{8a^2}\\a=\frac{1}{2}\end{cases}}\Leftrightarrow a=\frac{1}{2}\)

c. \(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\), làm tương tự câu a, b

d.

\(t=\frac{a+b}{\sqrt{ab}}\ge\frac{2\sqrt{ab}}{\sqrt{ab}}=2\)

\(D=t+\frac{1}{t}\text{ }\left(t\ge2\right)\), làm tương tự câu a.

👁💧👄💧👁
Xem chi tiết
👁💧👄💧👁
30 tháng 3 2019 lúc 18:15

Mn đừng chép bài giải ở CHTT nha vì em chưa học đến, giải = cách lớp 6 thôi ạ.

Loan Trinh
Xem chi tiết