Cho a+b+c=0.Cm đẳng thức:
a) \(a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\)
b) \(a^4+b^4+c^4=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)
Cho a,b,C>0 thỏa mãn an+bc+ca=1.Tìm GTNN M=\(\frac{a^8}{\left(a^4+b^4\right)\left(a^2+b^2\right)}+\frac{b^8}{\left(b^4+c^4\right)\left(b^2+c^2\right)}+\frac{c^8}{\left(c^4+a^4\right)\left(c^2+b^2\right)}\)
Có: \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2009+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{2009}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=\left(-\frac{2009}{2}\right)^2\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2=\left(-\frac{2009}{2}\right)^2\)
Mặt khác: \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=a^4+b^4+c^4+2.\left(-\frac{2009}{2}\right)^2=2009^2\)
\(\Leftrightarrow a^4+b^4+c^4=2009^2-2.\left(-\frac{2009}{2}\right)^2=2009^2-2.\frac{2009^2}{2^2}=2009^2-\frac{2009^2}{2}\)
--Hà Phương--
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)
Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\); \(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)
Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*
\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)
Đẳng thức xảy ra khi a = b = c
P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:
1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)
\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)
bài 2 xem có ghi nhầm ko
3a biến đổi tí là xong
b tuong tự bài 1
Bài 3. Cho \(a,b,c\in R\). Chứng minh các bất đẳng thức sau:
\(a,\frac{a^2+3}{\sqrt{a^2+2}}>2\)
\(b,\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\) \(\left(ab>0\right)\)
\(c,\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)
a)đpcm<=>(a2+3)2>4(a2+2)<=>(a2+1)2>0(lđ)
b)đpcm<=>\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Theo AM-GM\(\left\{{}\begin{matrix}a^4+b^4+b^4+b^4\ge4a^3b\\b^4+a^4+a^4+a^4\ge4b^3a\end{matrix}\right.\)
=>đpcm. Dấu bằng xảy ra khi a=b
c)AM-GM:\(VT\ge256\left|abcd\right|\ge256abcd\)
Dấu bằng xảy ra khi hai số bằng 2, hai số còn lại bằng -2 hoặc cả 4 số bằng 2 hoặc cả 4 số bằng -2
\(P=\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\frac{b}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}+\frac{c}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)
\(\ge\frac{2a}{b^2+2}+\frac{2b}{c^2+2}+\frac{2c}{a^2+2}=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+2}+\frac{bc^2}{c^2+2}+\frac{ca^2}{a^2+2}\right)\)
\(=6-\left(\frac{2ab^2}{b^2+4+b^2}+\frac{2bc^2}{c^2+4+c^2}+\frac{2ca^2}{a^2+4+a^2}\right)\ge6-\left(\frac{2ab}{b+4}+\frac{2bc}{c+4}+\frac{2ca}{a+4}\right)\)
\(=6-\left(2a+2b+2c-\frac{8a}{b+4}-\frac{8b}{c+4}-\frac{8c}{a+4}\right)\)
\(=\frac{8a}{b+4}+\frac{8b}{c+4}+\frac{8c}{a+4}-6=\frac{8a^2}{ab+4a}+\frac{8b^2}{bc+4b}+\frac{8c^2}{ca+4c}-6\)
\(\ge\frac{8\left(a+b+c\right)^2}{\left(ab+bc+ca\right)+4\left(a+b+c\right)}-6\ge\frac{288}{\frac{\left(a+b+c\right)^2}{3}+24}-6=2\)
Cho ab+bc+ca=1. Tìm gia trị nhỏ nhất của:\(P=\frac{a^8}{\left(a^4+b^4\right)\left(a^2+b^2\right)}+\frac{b^8}{\left(b^4+c^4\right)\left(b^2+c^2\right)}+\frac{c^8}{\left(c^4+a^4\right)\left(c^2+a^2\right)}\)
Cho a,b,c∈R.CM bđt \(a^2+b^2+c^2\ge ab+bc+ca\) (1). Áp dụng cm các bđt sau:
a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b)\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
c)\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d)\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
e)\(\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}vớia,b,c>0\)
f)\(a^4+b^4+c^4\ge abc\) nếu a+b+c=1
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
a/ Từ BĐT ban đầu ta có:
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)
b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:
\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)
c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:
\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:
\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)
Mặt khác ta cũng có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
e/ Chia 2 vế của BĐT ở câu c cho 9 ta được:
\(\frac{\left(a+b+c\right)^2}{9}\ge\frac{ab+bc+ca}{3}\)
Khai căn 2 vế: \(\Rightarrow\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}\)
f/ Áp dụng BĐT ở câu d:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)=abc\) (do \(a+b+c=1\))
Cho a,b,c>0. CM: \(\frac{a^4+b^4+c^4}{ab+bc+ca}+\frac{3abc}{a+b+c}\ge\frac{2}{3}.\left(a^2+b^2+c^2\right)\)
1. cho a,b,c>0. Cmr: a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
b) \(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
\(\Leftrightarrow\frac{3\left(a^4+b^4+c^4\right)-\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}-\frac{a^2+b^2+c^2-ab-bc-ca}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\frac{2\Sigma_{cyc}\left(a+b\right)^2\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}-\frac{\Sigma_{cyc}\left(a^2+b^2+c^2\right)\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2\ge0\)
Giả sử \(a\ge b\ge c\Rightarrow c^2+4ca+a^2-b^2\ge0\)
Ta có: \(VT=\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2+\left(b^2+4bc+c^2-a^2\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b+b-c\right)^2\)
\(=\left(2a^2+4ab+4ca\right)\left(a-b\right)^2+\left(2c^2+4ca+4bc\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b\right)\left(b-c\right)\ge0\)Ta có đpcm.
Đẳng thức xảy ra khi \(a=b=c\)
b) \(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{abc}-\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\left(a^2+b^2+c^2-ab-bc-ca\right)\left(\frac{a+b+c}{abc}-\frac{9}{a^2+b^2+c^2}\right)\ge0\) (phân tích cái tử của phân thức thức nhất thành nhân tử rồi nhóm lại)
\(\Leftrightarrow\left[\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2c\right)^2\right]\left(\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-9abc}{abc\left(a^2+b^2+c^2\right)}\right)\ge0\) (đúng)
Đẳng thức xảy ra khi \(a=b=c\)
P/s: Đáng ráng phân tích tiếp cái ngoặc phía sau cho đẹp nhưng lười quá nên thôi:v (dùng Cauchy nó cũng đúng rồi nên phân tích làm gì cho mệt)
Vũ Minh Tuấn, Nguyễn Việt Lâm, No choice teen, tth, @Akai Haruma, @Nguyễn Huy Thắng, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Cảm ơm nhiều ạ!