giải pt
\(\left(x^2-3x+1\right)\left(x^2+3x+2\right)\left(x^2-9x+20\right)=-30\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Giải bất pt sau
\(\left(x-1\right)\left(3x^2+9x-12\right)< 0\)
Giải PT sau :
\(3x\left(2+\sqrt{9x^2+3}\right)-\left(4x+1\right)\left(1+\sqrt{1+x+x^2}\right)=0\)
giải pt vô tỉ sau
\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(1+\sqrt{1+x+x^2}\right)=0\)
T sợ chỉ dám liên hợp thôi, nhường cách bình phương cho 1 ng` chăm chỉ :(
\(pt\Leftrightarrow6x+3x\sqrt{9x^2+3}+4x+2+\left(4x+2\right)\sqrt{x^2+x+1}=0\)
\(\Leftrightarrow2\left(5x+1\right)+\left(3x\sqrt{9x^2+3}+\dfrac{6\sqrt{21}}{25}\right)+\left(\left(4x+2\right)\sqrt{x^2+x+1}-\dfrac{6\sqrt{21}}{25}\right)=0\)
\(\Leftrightarrow2\left(5x+1\right)+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(5x+1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+1\right)\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}=0\)
\(\Leftrightarrow\left(5x+1\right)\left(2+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}\right)=0\)
\(\Rightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
Giải pt: \(\left(x^2+3x+2\right)\left(x^2+9x+18\right)=168x^2\)
\(\left(x^2+3x+2\right)\left(x^2+9x+18\right)=168x^2\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=168x^2\)
\(\Leftrightarrow\left(x^2+7x+6\right)\left(x^2+5x+6\right)=168x^2\)(1)
Đặt \(x^2+5x+6=t\)
Khi đó (1) trở thành: \(\left(t+2x\right)t=168x^2\Leftrightarrow t^2+2xt-168x^2=0\)
\(\Leftrightarrow\left(t-12x\right)\left(t+14x\right)=0\Leftrightarrow\orbr{\begin{cases}t=12x\\t=-14x\end{cases}}\)
TH1: \(t=12x\Rightarrow x^2+5x+6=12x\)
\(\Leftrightarrow x^2-7x+6=0\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\)
TH2: \(t=-14x\Rightarrow x^2+5x+6=-14x\Rightarrow x^2+19x+6=0\)
\(\Leftrightarrow x^2+2.x.\frac{19}{2}+\left(\frac{19}{2}\right)^2-\frac{337}{4}=0\)
\(\Leftrightarrow\left(x+\frac{19}{2}\right)^2=\frac{337}{4}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{337}-19}{2}\\x=\frac{-\sqrt{337}-19}{2}\end{cases}}\)
giải pt
a) \(x^2+2x+\left(x-2\right)\sqrt{x^2+2x-6}=6\)
b) \(x^3-7x\sqrt{x^2-x+2}=8-14\sqrt{x^2+2x-2}\)
c) \(\sqrt{\left(x^2+x\right)^2+2x^2+2x}=\left(3-x\right)\sqrt{x^2+x}\)
d) \(x^2+3x+3=3x\left(\sqrt{x^2+3x+4}+1\right)\)
e) \(2x^2-9x+1=2\left(\sqrt{3x^2-9x+1}+x\right)\)
a/ ĐKXĐ: \(x^2+2x-6\ge0\)
\(\Leftrightarrow x^2+2x-6+\left(x-2\right)\sqrt{x^2+2x-6}=0\)
\(\Leftrightarrow\sqrt{x^2+2x-6}\left(\sqrt{x^2+2x-6}+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-6}=0\left(1\right)\\\sqrt{x^2+2x-6}=2-x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+2x-6=0\Rightarrow x=-1\pm\sqrt{7}\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}2-x\ge0\\x^2+2x-6=\left(2-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\6x=10\end{matrix}\right.\) \(\Rightarrow x=\frac{5}{3}\)
Câu b nhìn ko ra hướng, ko biết đề có nhầm đâu ko :(
c/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge0\\x\le-1\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x^2+x\right)\left(x^2+x+2\right)}-\left(3-x\right)\sqrt{x^2+x}=0\)
\(\Leftrightarrow\sqrt{x^2+x}\left(\sqrt{x^2+x+2}-3+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\left(1\right)\\\sqrt{x^2+x+2}=3-x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3-x\ge0\\x^2+x+2=\left(3-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\7x=7\end{matrix}\right.\) \(\Rightarrow x=1\)
d/
Ta có \(\sqrt{x^2+3x+4}=\sqrt{\left(x+\frac{3}{4}\right)^2+\frac{7}{4}}>1\)
\(\Rightarrow\sqrt{x^2+3x+4}-1>0\)
Nhân 2 vế của pt với \(\sqrt{x^2+3x+4}-1\)
\(\left(\sqrt{x^2+3x+4}-1\right)\left(x^2+3x+3\right)=3x\left(x^2+3x+3\right)\)
\(\Leftrightarrow\left(x^2+3x+3\right)\left(\sqrt{x^2+3x+4}-1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+3=0\left(vn\right)\\\sqrt{x^2+3x+4}=3x+1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\x^2+3x+4=\left(3x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow8x^2+3x-3=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-3+\sqrt{105}}{6}\\x=\frac{-3-\sqrt{105}}{6}\left(l\right)\end{matrix}\right.\)
e/ ĐKXĐ: \(3x^2-9x+1\ge0\)
\(\Leftrightarrow3x^2-9x+1-x^2=2\left(\sqrt{3x^2-9x+1}+x\right)\)
\(\Leftrightarrow\left(\sqrt{3x^2-9x+1}+x\right)\left(\sqrt{3x^2-9x+1}+x\right)=2\left(\sqrt{3x^2-9x+1}+x\right)\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{3x^2-9x+1}+x=0\left(1\right)\\\sqrt{3x^2-9x+1}-x=2\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{3x^2-9x+1}=-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\3x^2-9x+1=x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le0\\2x^2-9x+1=0\end{matrix}\right.\) \(\Rightarrow x=\frac{9\pm\sqrt{73}}{4}\left(l\right)\)
\(\left(2\right)\Leftrightarrow\sqrt{3x^2-9x+1}=x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\3x^2-9x+1=\left(x+2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\2x^2-13x-3=0\end{matrix}\right.\)
\(\Rightarrow x=\frac{13\pm\sqrt{193}}{4}\)
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
Giải Phương trình
\(3x\left(3x^2-6x-1\right)-x\left(9x^2-9x-2\right)-\left(3x+1\right)^2=33\)
Help me
Cần gấp trong hôm nay
bài 1 ; giải pt
a,\(\left(2x-3\right)^2=\left(x+1\right)^2\)
b, \(\left(x+2\right)\left(5-3x\right)=x^2+4x+4\)
c,\(x^2-9x+20=0\)
d,\(x^2+8x+16=25\)
a,\(\left(2x-3\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(2x-3+x+1\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=4\end{matrix}\right.\)
Vậy...
b,\(\left(x+2\right)\left(5-3x\right)=x^2+4x+4\)
\(\Leftrightarrow\left(x+2\right)\left(5-3x\right)-\left(x+2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-4x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy...