Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KYAN Gaming
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:53

\(A=\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)ĐK : x > 0 ; x \(\ne\)4

\(=\left(\dfrac{x+2\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)=\dfrac{x\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(x-4\right)}\)

\(=\dfrac{x}{\sqrt{x}-2}\)

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 19:54

Ta có: \(A=\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)

\(=\dfrac{x-2\sqrt{x}+4\sqrt{x}}{\sqrt{x}-2}:\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x}{\sqrt{x}-2}\)

Liên Phạm Thị
Xem chi tiết
Liên Phạm Thị
7 tháng 5 2022 lúc 12:49

mik cần gấp ạ^^

 

Phương Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 8 2021 lúc 21:33

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 21:29

Ta có: \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

Anh Quynh
Xem chi tiết
nthv_.
23 tháng 11 2021 lúc 11:37

\(\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}-\dfrac{2x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{4-2\sqrt{x}+4\sqrt{x}+2x-2x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{4-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2}{2+\sqrt{x}}\)

๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
YangSu
18 tháng 6 2023 lúc 16:08

\(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dkxd:x\ne4,x\ge0\right)\)

\(=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\)

\(=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\dfrac{4-2\sqrt{x}+2-\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\dfrac{6-3\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\dfrac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\dfrac{3}{2+\sqrt{x}}\)

HT.Phong (9A5)
18 tháng 6 2023 lúc 15:56

\(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\)

\(=\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2+\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(=\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}+2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(=\dfrac{4-2\sqrt{x}+2+\sqrt{x}+2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}+6}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2023 lúc 18:09

loading...

 

PTTD
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 21:48

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b: Ta có: \(D=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+5}{x-4}\right)\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-5\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{3\sqrt{x}-1}{\sqrt{x}}\)

Phạm Trần Bỏ Phương
Xem chi tiết
Lê Ng Hải Anh
24 tháng 5 2021 lúc 16:48

\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\) (ĐK: x ≥ 0, x ≠ 4)

\(=\left[\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right]\)

\(=\left(\dfrac{-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\dfrac{6}{\sqrt{x}+2}\)

\(=\dfrac{\left(-6\right)\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)

Vậy...

 

nani hirukit
Xem chi tiết
Nguyễn Huy Tú
18 tháng 2 2022 lúc 13:41

đk : x >= 0, x khác 4 

\(=\dfrac{x+2\sqrt{x}-\left(x-\sqrt{x}-2\right)-\sqrt{x}-4}{x-4}\)

\(=\dfrac{2\sqrt{x}-2}{x-4}=\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

Dung Vu
Xem chi tiết
ILoveMath
10 tháng 11 2021 lúc 14:34

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 14:35

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)