ĐKXĐ: x ≥ 0; x ≠ 4
Khi đó ta có:
\(\dfrac{2+\sqrt{x}}{2-\sqrt{ }x}\) \(-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\)\(-\dfrac{4}{x-4}\)
= \(\dfrac{\left(2+\sqrt{x}\right)\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)\(-\dfrac{\left(2-\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)\(+\dfrac{4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
= \(\dfrac{\left(4+4\sqrt{x}+x\right)-\left(4-4\sqrt{x}+x\right)+4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
= \(\dfrac{8\sqrt{x}+4}{x-4}\)