Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Myrie thieu nang :)
Xem chi tiết
ミ★ΉảI ĐăПG 7.12★彡
21 tháng 12 2020 lúc 10:29

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

Linh Vũ khánh
9 tháng 12 2021 lúc 21:28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

ĐTT
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 1 2019 lúc 22:13

\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}=\dfrac{2y^2}{8}=\dfrac{2x^2}{2}\)

\(\Rightarrow\dfrac{2y^2}{8}=\dfrac{2x^2}{2}\Rightarrow y^2=4x^2\)

Lại có \(x^{10}.y^{10}=1024\Leftrightarrow x^{10}.\left(y^2\right)^5=1024\)

\(\Leftrightarrow x^{10}.\left(4x^2\right)^5=1024\Leftrightarrow4^5.x^{10}.x^{10}=1024\)

\(\Leftrightarrow1024.x^{20}=1024\Rightarrow x^{20}=1\Rightarrow x=\pm1\)

\(\Rightarrow y^2=4x^2=4\Rightarrow y=\pm2\)

Vậy \(\left\{{}\begin{matrix}x=\pm1\\y=\pm2\end{matrix}\right.\)

Nguyễn Trung Hiếu
Xem chi tiết
Nguyễn Đức Trí
28 tháng 8 2023 lúc 18:39

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)

b) \(\left|2x+3\right|=x+2\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)

Nguyễn Đức Trí
28 tháng 8 2023 lúc 19:03

Đính chính

Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)

___Vương Tuấn Khải___
Xem chi tiết
Nguyễn Thanh Hằng
7 tháng 12 2017 lúc 12:26

Ta có :

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}\)

\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(x^2+y^2\right)\)

\(\Leftrightarrow5y^2-5x^2=3x^2+3y^2\)

\(\Leftrightarrow5y^2-3y^2=3x^2+5x^2\)

\(\Leftrightarrow2y^2=8x^2\)

\(\Leftrightarrow y^2=4x^2\)

\(\Leftrightarrow y^{10}=1024.x^{10}\)

Lại có : \(x^{10}.y^{10}=1024\)

\(\Leftrightarrow x^{10}.x^{10}.1024=1024\)

\(\Leftrightarrow x^{20}.1024=1024\)

\(\Leftrightarrow x^{20}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

+) Với \(x=1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

+) Với \(x=-1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ..

 Mashiro Shiina
7 tháng 12 2017 lúc 12:50

\(x^{10}.y^{10}=1024\Leftrightarrow x^2.y^2=4\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{y^2-x^2+x^2+y^2}{3+5}=\dfrac{2y^2}{8}=\dfrac{y^2}{4}\)(1)

\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{x^2+y^2-y^2+x^2}{5-3}=\dfrac{2x^2}{2}=\dfrac{x^2}{1}\)(2)

Từ (1) và (2) ta có: \(\dfrac{y^2}{4}=\dfrac{x^2}{1}\)

Lúc này bạn có: \(\left\{{}\begin{matrix}x^2y^2=4\\\dfrac{y^2}{4}=\dfrac{x^2}{1}\end{matrix}\right.\) dễ dàng tìm được nghiệm của phương trình

Nam Lee
Xem chi tiết
Akai Haruma
18 tháng 7 2018 lúc 0:16

Lời giải:

Ta có: \(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\Rightarrow 5(y^2-x^2)=3(y^2+x^2)\)

\(\Rightarrow 2y^2=8x^2\Rightarrow y^2=4x^2\)

\(\Rightarrow y^{10}=4^5x^{10}=(2x)^{10}\)

Do đó:

\(x^{10}y^{10}=x^{10}.(2x)^{10}=1024\)

\(\Leftrightarrow (2x^2)^{10}=1024=2^{10}=(-2)^{10}\)

\(\Rightarrow \left[\begin{matrix} 2x^2=2\\ 2x^2=-2(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow x^2=1\Rightarrow x=\pm 1\)

\(y^2=4x^2=4\Rightarrow y=\pm 2\)

Vậy \((x,y)=(1,-2); (1,2); (-1,2); (-1,-2)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
20 tháng 9 2023 lúc 22:01

a)      \(x + y = 30;\dfrac{x}{2} = \dfrac{y}{3}\) áp dụng tính chất của tỉ lệ thức ra có :

\( \Rightarrow \dfrac{{x + y}}{{2 + 3}} = \dfrac{x}{2}\)

\( \Rightarrow \dfrac{{30}}{5} = \dfrac{x}{2}\)

\( \Rightarrow 30.2 = x.5\)

\(\begin{array}{l} \Rightarrow 60:5 = x\\ \Rightarrow x = 12\\ \Rightarrow 14 + y = 30\\ \Rightarrow y = 18\end{array}\)    ( thay x vừa tìm được = 12 vào x + y = 30 để tìm ra y )

Vậy x = 12 y = 18

b)      Ta có : \(\dfrac{x}{5} = \dfrac{y}{{ - 2}}\)= \(\dfrac{{x - y}}{{5 + 2}}\)( áp dụng tính chất tỉ lệ thức ) (1)

Mà theo đề bài x – y = -21

Thay -21 vào (1) ta có : \(\dfrac{{ - 21}}{7} =  - 3\) \( = \dfrac{x}{5}\)

\( \Rightarrow \)x = (-3).5

\( \Rightarrow \)x = -15

Thay x bằng -15 ta có -15 – y = -21

\( \Rightarrow \)y = -15 + 21

\( \Rightarrow \)y = 6

Vậy x = -15 và y = 6

Nam Lee
Xem chi tiết
Mặc Chinh Vũ
17 tháng 7 2018 lúc 21:19

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}=\dfrac{\left(y^2-x^2\right)-\left(y^2+x^2\right)}{3+5}=\dfrac{\left(y^2-x^2\right)-\left(y^2-x^2\right)}{3-5}\Rightarrow\dfrac{2y^2}{8}=\dfrac{-2x^2}{-2}\Rightarrow\dfrac{y^2}{4}=x^2\Rightarrow y^2=4x^2\)

Ta có: \(x^{10}.y^{10}=x^{10}.\left(4x^2\right)^5=1024.x^{20}=1024\Rightarrow x^{20}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

\(\Rightarrow y^2=4\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)\(y\in\left\{4;-4\right\}\)

Nguyễn Thanh Hằng
17 tháng 7 2018 lúc 21:19

\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}\)

\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(y^2+x^2\right)\)

\(\Leftrightarrow5y^2-5x^2=3y^2+3x^2\)

\(\Leftrightarrow2y^2=8x^2\)

\(\Leftrightarrow y^2=4x^2\)

\(\Leftrightarrow y^{10}=1024.x^{10}\)

\(x^{10}.y^{10}=1024\)

\(\Leftrightarrow x^{10}.1024x^{10}=1024\)

\(\Leftrightarrow x^{20}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

+)Với \(x=1\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

+) Với \(x=-1\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy...

Nguyễn Minh An
Xem chi tiết
ILoveMath
20 tháng 8 2021 lúc 8:20

1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)

\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)

\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)

Nguyễn Minh An
Xem chi tiết