Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Nguyễn
Xem chi tiết
Akai Haruma
28 tháng 6 2021 lúc 18:16

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

Akai Haruma
28 tháng 6 2021 lúc 18:23

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:11

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

Puca Trần
Xem chi tiết
Hoàng Tử Hà
31 tháng 8 2019 lúc 23:46

a/ \(\tan^2x-\cot^2\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-1-\frac{1}{\sin^2\left(x-\frac{\pi}{4}\right)}+1=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\sin x.\cos\frac{\pi}{4}-\cos x.\sin\frac{\pi}{4}\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\frac{\sqrt{2}}{2}\sin x-\frac{\sqrt{2}}{2}\cos x\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x}=0\)

\(\Leftrightarrow\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x-\cos^2x=0\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}\cos^2x-\sin x.\cos x-\frac{1}{2}\cos^2x=0\)

\(\Leftrightarrow\cos^2x+\sin x.\cos x-\frac{1}{2}=0\)

Đến đây là dễ r nha bn :3

Lê Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:34

1.

\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)

2.

\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)

4.

\(cos3x+cosx+cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:35

3. ĐKXĐ: ...

\(\Leftrightarrow\frac{sin\left(x-15\right)}{cos\left(x-15\right)}=\frac{3sin\left(x+15\right)}{cos\left(x+15\right)}\)

\(\Leftrightarrow sin\left(x-15\right)cos\left(x+15\right)=3sin\left(x+15\right)cos\left(x-15\right)\)

\(\Leftrightarrow sin2x-sin30^0=3\left[sin2x+sin30^0\right]\)

\(\Leftrightarrow sin2x-\frac{1}{2}=3sin2x+\frac{3}{2}\)

\(\Leftrightarrow sin2x=-1\)

\(\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
4 tháng 10 2020 lúc 15:38

5.

\(sin6x+sin2x+sin4x=0\)

\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)

\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)

6. ĐKXĐ; ...

\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)

\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)

\(\Leftrightarrow tan3x=1\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2020 lúc 22:22

\(E=\frac{\frac{1}{sin^2x}}{1-\frac{cosx}{sinx}+\frac{cos^2x}{sin^2x}}=\frac{1+cot^2x}{1-cotx+cot^2x}=\frac{1+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{4}}=...\)

\(A=tan^2x+cot^2x=\left(tanx+cotx\right)^2-2=4-2=2\)

\(B=\left(tanx+cotx\right)^3-3tanx.cotx\left(tanx+cotx\right)=2^3-3.1.2=2\)

Phong Vũ
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2021 lúc 8:01

Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)

2.

\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)

\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)

3.

\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)

4.

\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)

5.

\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)

\(=tan^2x+1+tan^2x=1+2tan^2x\)

Khánh Linh Nguyễn
Xem chi tiết
Rin Huỳnh
14 tháng 9 2021 lúc 22:17

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

Rin Huỳnh
14 tháng 9 2021 lúc 22:24

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

Rin Huỳnh
14 tháng 9 2021 lúc 22:28

c) ĐKXĐ: x # kpi

Pt <=> tanx + 1/tanx + 2 = 0

--> tanx = -1

--> x = -pi/4 + kpi (k nguyên)

Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết