1.
\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)
2.
\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)
4.
\(cos3x+cosx+cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
3. ĐKXĐ: ...
\(\Leftrightarrow\frac{sin\left(x-15\right)}{cos\left(x-15\right)}=\frac{3sin\left(x+15\right)}{cos\left(x+15\right)}\)
\(\Leftrightarrow sin\left(x-15\right)cos\left(x+15\right)=3sin\left(x+15\right)cos\left(x-15\right)\)
\(\Leftrightarrow sin2x-sin30^0=3\left[sin2x+sin30^0\right]\)
\(\Leftrightarrow sin2x-\frac{1}{2}=3sin2x+\frac{3}{2}\)
\(\Leftrightarrow sin2x=-1\)
\(\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)
5.
\(sin6x+sin2x+sin4x=0\)
\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)
\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)
6. ĐKXĐ; ...
\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)
\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)
\(\Leftrightarrow tan3x=1\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)
7.
\(\Leftrightarrow tanx+tan2x=tanx.tan2x.tan3x-tan3x\)
\(\Leftrightarrow tanx+tan2x=-tan3x\left(1-tanx.tan2x\right)\)
\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=-tan3x\)
\(\Leftrightarrow tan3x=-tan3x\)
\(\Leftrightarrow tan3x=0\)
\(\Leftrightarrow x=\frac{k\pi}{3}\)
8.
\(\frac{1}{sin^2x}+\frac{3}{sinx}+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{sinx}=-1\\\frac{1}{sinx}=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
Cái này khó lắm mình không làm được ???