Bài 3: Một số phương trình lượng giác thường gặp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tran duc huy

Giải phương trình:

1.\(cos^3x.cos3x+sin^3x.sin3x=\frac{\sqrt{2}}{4}\)

2.\(cos^34x=cos^3x.cos3x+sin^3x.sin3x\)

3.\(cos^2x-4sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right)+2=0\)

4.\(sin^4x+sin^4\left(x+\frac{\pi}{4}\right)=\frac{1}{4}\)

5.\(sin^6x+cos^6x=\frac{5}{6}\left(sin^4x+cos^4x\right)\)

6.\(sin^6x+cos^6x+\frac{1}{2}sinx.cosx=0\)

7.\(\frac{1}{2}\left(sin^4x+cos^4x\right)=sin^2x.cos^2x+sinx.cosx\)

8.\(sin^6x+cos^6x-3cos8x+2=0\)

9.\(sin^4x+cos^4x-2\left(sin^6\frac{x}{2}+cos^6\frac{x}{2}\right)+1=0\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:33

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:35

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 7:57

1.

\(\Rightarrow4cos^3x.cos3x+4sin^3x.sin3x=\sqrt{2}\)

\(\Leftrightarrow\left(3cosx+cos3x\right)cos3x+\left(3sinx-sin3x\right)sin3x=\sqrt{2}\)

\(\Leftrightarrow3\left(cos3x.cosx+sin3x.sinx\right)+cos^23x-sin^23x=\sqrt{2}\)

\(\Leftrightarrow3cos2x+cos6x=\sqrt{2}\)

\(\Leftrightarrow3cos2x+4cos^32x-3cos2x=\sqrt{2}\)

\(\Leftrightarrow4cos^32x=\sqrt{2}\)

\(\Leftrightarrow cos2x=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{4}+k2\pi\\2x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:15

2.

\(\Leftrightarrow4cos^34x=4cos^3x.cos3x+4sin^3x.sin3x\)

\(\Leftrightarrow3cos4x+cos12x=\left(3cosx+cos3x\right)cos3x+\left(3sinx-sin3x\right)sin3x\)

\(\Leftrightarrow3cos4x+cos12x=3\left(cos3x.cosx+sin3x.sinx\right)+cos^23x-sin^23x\)

\(\Leftrightarrow3cos4x+cos12x=3cos2x+cos6x\)

\(\Leftrightarrow3\left(cos4x-cos2x\right)+cos12x-cos6x=0\)

\(\Leftrightarrow3sin3x.sinx+sin9x.sin3x=0\)

\(\Leftrightarrow sin3x\left(3sinx+sin9x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\left(1\right)\\3sinx+sin9x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\frac{k\pi}{3}\)

\(\left(2\right)\Leftrightarrow3sinx+3sin3x-4sin^33x=0\)

\(\Leftrightarrow3sinx+9sinx-12sin^3x-4\left(3sinx-4sin^3x\right)^3=0\)

\(\Leftrightarrow12sinx\left(1-sin^2x\right)-4sin^3x\left(3-4sin^2x\right)^3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\12cos^2x-4sin^2x\left(2cos2x+1\right)^3=0\left(3\right)\end{matrix}\right.\)

\(\left(3\right)\Leftrightarrow6cos2x+6-2\left(1-cos2x\right)\left(2cos2x+1\right)^3=0\)

Đặt \(cos2x=t\Rightarrow3t+3-\left(1-t\right)\left(2t+1\right)^3=0\)

\(\Leftrightarrow4t^4+2t^3-3t^2-t+1=0\)

Pt này vô nghiệm

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:23

3.

\(cos^2x+2\left[1-2sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right)\right]=0\)

\(\Leftrightarrow cos^2x+2cos\left(x-\frac{\pi}{2}\right)=0\)

\(\Leftrightarrow cos^2x+2sinx=0\)

\(\Leftrightarrow-sin^2x+2sinx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\sqrt{2}+1\left(l\right)\\sinx=\sqrt{2}-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\sqrt{2}-1\right)+k2\pi\\x=\pi-arcsin\left(\sqrt{2}-1\right)+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:29

4.

\(\Leftrightarrow\left(2sin^2x\right)^2+\left(2sin^2\left(x+\frac{\pi}{4}\right)\right)^2=1\)

\(\Leftrightarrow\left(1-cos2x\right)^2+\left[1-cos\left(2x+\frac{\pi}{2}\right)\right]^2=1\)

\(\Leftrightarrow\left(1-cos2x\right)^2+\left(1+sin2x\right)^2=1\)

\(\Leftrightarrow cos^22x-2cos2x+1+sin^22x+2sin2x+1=1\)

\(\Leftrightarrow sin2x-cos2x=-1\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:38

7.

\(\Leftrightarrow\frac{1}{2}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]=sin^2x.cos^2x+sinx.cosx\)

\(\Leftrightarrow1-2sin^2x.cos^2x=2sin^2x.cos^2x+2sinx.cosx\)

\(\Leftrightarrow4sin^2x.cos^2x+2sinx.cosx-1=0\)

\(\Leftrightarrow sin^22x+sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{5}-1}{2}\\sin2x=\frac{-\sqrt{5}-1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}arcsin\left(\frac{\sqrt{5}-1}{2}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(\frac{\sqrt{5}-1}{2}\right)+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:42

8.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3cos8x+2=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x-3cos8x+2=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x-3cos8x+2=0\)

\(\Leftrightarrow1-\frac{3}{8}\left(1-cos4x\right)-3\left(2cos^24x-1\right)+2=0\)

\(\Leftrightarrow-48cos^24x+3cos4x+45=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{15}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=k2\pi\\4x=arccos\left(-\frac{15}{16}\right)+k2\pi\\4x=-arccos\left(-\frac{15}{16}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{1}{4}arccos\left(-\frac{15}{16}\right)+\frac{k\pi}{2}\\x=-\frac{1}{4}arccos\left(-\frac{15}{16}\right)+\frac{k\pi}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
8 tháng 8 2020 lúc 8:47

9.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-2\left[\left(sin^2\frac{x}{2}+cos^2\frac{x}{2}\right)^3-3sin^2\frac{x}{2}.cos^2\frac{x}{2}\right]+1=0\)

\(\Leftrightarrow1-2sin^2x.cos^2x-2+6sin^2\frac{x}{2}.cos^2\frac{x}{2}+1=0\)

\(\Leftrightarrow-2sin^2x.cos^2x+\frac{3}{2}sin^2x=0\)

\(\Leftrightarrow sin^2x\left(3-4cos^2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\frac{\sqrt{3}}{2}\\cosx=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k2\pi\\x=\pm\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)


Các câu hỏi tương tự
M Thiện Nguyễn
Xem chi tiết
Thảo Nguyễn Phương
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Lê Phương Thảo
Xem chi tiết
Lê Phương Thảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
xữ nữ của tôi
Xem chi tiết
Julian Edward
Xem chi tiết