a/
\(\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow3+5cosx=sin^2x-cos^2x\)
\(\Leftrightarrow3+5cosx=\left(1-cos^2x\right)-cos^2x\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)
b/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)
\(a+b+c=\sqrt{3}-\left(\sqrt{3}+1\right)+1=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow6\left(\frac{1-cos2x}{2}\right)+2\left(1-cos^22x\right)=5\)
\(\Leftrightarrow-2cos^22x-3cos2x=0\)
\(\Leftrightarrow cos2x\left(2cos2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
d/
\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)
\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^22x+sin2x+1=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
e/
ĐKXĐ: ...
\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)
\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)
Đặt \(\frac{1}{cosx}=t\)
\(\Rightarrow9t^2-13t+4=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=k2\pi\)