Giải pt sau:
\(2\left(Tan^2x-Cot^2x\right)-5\left(Tanx+Cotx\right)+6=0\)
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình : \(sin^2x+\sqrt{3}sinxcosx=1\) ?
A . \(cosx\left(cot^2x-3\right)=0\)
B . \(sin\left(x+\frac{\Pi}{2}\right)[tan\left(x+\frac{\Pi}{4}\right)-2-\sqrt{3}]=0\)
C . \([cos^2x\left(x+\frac{\Pi}{2}\right)-1]\left(tanx-\sqrt{3}\right)=0\)
D . \(\left(sinx-1\right)\left(cotx-\sqrt{3}\right)=0\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
HELP ME !!!!!!
Giải phương trình sau:
a) $\tan ^2x+4\cos ^2x+7=4\tan x+8\cot x$
b) $6\sin ^2x+2\cos ^2x-2\sqrt{3}\sin 2x=14\sin \left(x-\frac{\pi }{6}\right)$
giải phương trình:
a,\(\left(cot\frac{x}{3}-1\right)\left(cot\frac{x}{2}+1\right)=0\)
b,\(tan\left(x-30\text{° }\right)cos\left(2x-150\text{° }\right)=0\)
c,\(\left(3tanx+\sqrt{3}\right)\left(2sinx-1\right)=0\)
d, \(cos2x.cot\left(x-\frac{\pi}{4}\right)=0\)
Giải phương trình : \(\frac{tan^2x+tanx}{tan^2x+1}=\frac{\sqrt{2}}{2}\sin\left(x+\frac{\Pi}{4}\right)\)
1) \(sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
2) \(tanx=sin^2x\left(c-\frac{\pi}{2010}\right)+cos^2\left(2x+\frac{\pi}{2010}\right)+sinx.sin\left(3x+\frac{\pi}{1005}\right)\)
3) \(1+2cosx\left(sinx-1\right)+\sqrt{2}sinx+4cosx.sin^2\frac{x}{2}=0\)
4) \(3cos4x-8cos^6x+2cos4x=3\)
5) \(1+sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)\)
6) \(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-4\sqrt{3}cos^2x.sinx.cos2x\)
7) \(\frac{tan^2x+tanx}{tan^2x+1}=\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{4}\right)\)
8) \(cos^4x+sin^4x+cos\left(x-\frac{\pi}{4}\right).sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)
bài 1: giải pt
a,\(\frac{cos\left(cos+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
b,\(\frac{sin^22x-2}{sin^22x-4cos^2x}=tan^2x\)
c, \(\frac{1+sin2x+cos2x}{1+cot^2x}=\sqrt{2}sinxsin2x\)
d, \(2tanx+cotx=2sin2x+\frac{1}{sin2x}\)
Giải phương trình
tanx+cotx = \(\sqrt{2}\left(sinx+cosx\right)\)
giải phương trình: \(\dfrac{5\left(\sqrt{3}\sin x+\cos x\right)-\sqrt{3}\cos2x+\sin2x-6}{\cot x-1}=0\)