Giải phương trình
\(\left(x^2+x+2\right)^2-\left(x+1\right)^3=x^6+1\)
giải phương trình
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
ĐKXĐ: \(x\notin\left\{-1;-2;-3;-4\right\}\)
Ta có: \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x+4}{\left(x+1\right)\left(x+4\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)
\(\Leftrightarrow\dfrac{18}{6\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)
Suy ra: \(x^2+5x+4=18\)
\(\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow x^2+7x-2x-14=0\)
\(\Leftrightarrow x\left(x+7\right)-2\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-7;2}
ĐKXĐ: $x \neq -1;-2;-3;-4$
$pt⇔\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$⇔\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$⇔\dfrac{3}{(x+1)(x+4)}=\dfrac{1}{6}$
$⇔x^2+5x+4=18$
$⇔x^2+5x-14=0$
$⇔(x-2)(x+7)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)(t/m)
Vậy...
Giải phương trình \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\dfrac{-3x^2}{4}\)
PT tương đương
\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=\dfrac{-3x^2}{4}\)
Xét \(x=0\Rightarrow6.6=0\)(vô lý)
Xét \(x\ne0\). Ta chia 2 vế của PT cho \(x^2\ne0\). PT tương đương
\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}+5\right)=\dfrac{-3}{4}\)
Đặt \(x+\dfrac{6}{x}+5=t\)
PT\(\Leftrightarrow t\left(t+2\right)=\dfrac{-3}{4}\Leftrightarrow t^2+2t+1=\dfrac{1}{4}\)
\(\Leftrightarrow\left(t+1\right)^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}t+1=\dfrac{-1}{2}\\t+1=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3}{2}\\t=\dfrac{-1}{2}\end{matrix}\right.\)
Đến đây bạn thay vào là tìm được nghiệm nhé.
Giải phương trình sau:
\(\left(x+1\right)^2-\left|3-2x\right|+6=\left(x+2\right)^2\)
`(x+1)^2 -|3-2x| +6 = (x+2)^2`
`<=> x^2 +2x +1 -|3-2x| +6 = x^2 +4x +4`
`<=> 2x +7 -4x -4 -|3-2x| =0`
`<=> 3 -2x -|3-2x| =0`
`<=> |3-2x| = 3-2x`
`@` nếu` 3-2x >= 0 => x <= 3/2 => |3-2x| =3-2x`
`=>` PT có dạng
`3-2x =3-2x(luôn-đúng)`
`=>` PT luôn có nghiệm khi `x<=3/2`
`@` nếu` 3-2x <0 => x >3/2 => |3-2x| = 2x-3`
`=> PT có dạng
`2x-3 = 3-2x`
`<=> 2x +2x = 3+3`
`<=> 4x=6`
`=> x = 3/2( loại)`
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
Giải các phương trình sau:
f. 5 – (x – 6) = 4(3 – 2x)
g. 7 – (2x + 4) = – (x + 4)
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
i. \(\left(x-2^3\right)+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x=2x^3-16\)
<=>\(8x=-16\)
<=>\(x=-2\)
i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)
<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(6x^2-2x-10=0\)
<=>\(3x^2-x-5=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>\(x=\dfrac{1}{5}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)
<=>\(8x=-16\)
<=>x=-2
i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(9x+6=0\)
<=>x=\(\dfrac{-2}{3}\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>
Giải phương trình \(2\sqrt{\left(x-1\right)\left(x+2\right)}+3=\sqrt{x-1}+6\sqrt{x+2}\)
ĐK: \(x\ge1\)
\(pt\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}-\sqrt{x-1}-6\sqrt{x+2}+3=0\)
\(\Leftrightarrow\left(2\sqrt{x+2}-1\right)\left(\sqrt{x-1}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+2}=1\\\sqrt{x-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+2\right)=1\\x-1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}\left(l\right)\\x=10\left(tm\right)\end{matrix}\right.\)
Vậy ...
giải bất phương trình sau
1, 2( x+3) > 5 ( x-1) +2
2, \(x^2-x\left(x+2\right)>3x-10\)
3, \(x\left(x-5\right)\)≤ \(\left(x+1\right)^2\)
4, 15 - 2 (x-7) <2 (x-3) -6
1) \(2\left(x+3\right)>5\left(x-1\right)+2\Leftrightarrow2x+6>5x-5+2\Leftrightarrow3x>9\Leftrightarrow x>3\)
2) \(x^2-x\left(x+2\right)>3x-10\)
\(\Leftrightarrow x^2-x^2-2x>3x-10\Leftrightarrow5x< 10\Leftrightarrow x< 2\)
3) \(x\left(x-5\right)< \left(x+1\right)^2\)
\(\Leftrightarrow x^2-5x< x^2+2x+1\Leftrightarrow7x>-1\Leftrightarrow x>-\dfrac{1}{7}\)
4) \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)
\(\Leftrightarrow15-2x+14< 2x-6-6\Leftrightarrow4x>41\Leftrightarrow x>\dfrac{41}{4}\)
1: Ta có: \(2\left(x+3\right)>5\left(x-1\right)+2\)
\(\Leftrightarrow2x+6>5x-5+2\)
\(\Leftrightarrow-3x>-9\)
hay x<3
2: Ta có: \(x^2-x\left(x+2\right)>3x-10\)
\(\Leftrightarrow x^2-x^2-2x>3x-10\)
\(\Leftrightarrow-5x>-10\)
hay x<2
3: Ta có: \(x\left(x-5\right)\le\left(x+1\right)^2\)
\(\Leftrightarrow x^2-5x-x^2-2x-1\ge0\)
\(\Leftrightarrow-7x\ge1\)
hay \(x\le-\dfrac{1}{7}\)
4: Ta có: \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)
\(\Leftrightarrow15-2x+14< 2x-6-6\)
\(\Leftrightarrow-4x< -12-29=-41\)
hay \(x>\dfrac{41}{4}\)
Giải các phương trình:
\(1.2x\left(x-3\right)+5\left(x-3\right)\)
\(2.\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
\(3.\dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)
\(1,\) thiếu đề
\(2,\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
\(\Leftrightarrow\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)}{30}-\dfrac{150}{30}\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-55x+20=24x-138\)
\(\Leftrightarrow24x-138+55x-20=0\)
\(\Leftrightarrow79x-158=0\)
\(\Leftrightarrow x=2\)
\(3,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne3\end{matrix}\right.\\ \dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2\left(x-3\right)}+\dfrac{1}{2\left(x-1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4\left(x-1\right)}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{x^2-1}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{x^2-2x-3}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4x-4}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)
\(\Leftrightarrow x.\dfrac{x^2-1+x^2-2x-3-4x+4}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x=0\)
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$