cho x>3 tìm Min P biết
P= \(\dfrac{^{^{x^2}+1}}{x}\)
Cho a>0. Tìm min P biết: \(P=a+\dfrac{2}{a+1}+3\); min X biết: \(X=\dfrac{a^2+1}{a-1}\)
Lời giải:
Áp dụng BĐT AM-GM:
$P=(a+1)+\frac{2}{a+1}+2\geq 2\sqrt{(a+1).\frac{2}{a+1}}+2=2\sqrt{2}+2$
Vậy $P_{\min}=2\sqrt{2}+2$
Giá trị này đạt tại $(a+1)^2=2; a>0\Leftrightarrow a=\sqrt{2}-1$
------------------------
Bổ sung ĐK: $a>1$
$X=\frac{a^2-1+2}{a-1}=a+1+\frac{2}{a-1}$
$=(a-1)+\frac{2}{a-1}+2$
$\geq 2\sqrt{2}+2$ (AM-GM)
Vậy $X_{\min}=2\sqrt{2}+2$
Giá trị đạt tại $(a-1)^2=\sqrt{2}; a>1\Leftrightarrow a=\sqrt{2}+1$
cho biểu thức P =\(\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\times\dfrac{4\sqrt{x}}{3}\) với x ≥ 0
a, Rút gọn P,
b, Tìm x để P=\(\dfrac{8}{9}\),
c, Tìm Max và Min của P
a) đk: x\(\ge0\);
P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)
= \(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)
= \(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Để P = \(\dfrac{8}{9}\)
<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)
<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)
<=> \(-2x+5\sqrt{x}-2=0\)
<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)
c)
Đặt \(\sqrt{x}=a\) (\(a\ge0\))
P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)
Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)
Dấu "=" <=> a = -1 (loại)
=> Không tìm được Min của P
Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)
<=> \(P\le\dfrac{4}{3}\)
Dấu "=" <=> a = 1 <=> x = 1 (tm)
b) Ta có: \(P=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\left(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Ta có: \(P=\dfrac{8}{9}\)
nên \(36\sqrt{x}=27\left(x-\sqrt{x}+1\right)\)
\(\Leftrightarrow27x-27\sqrt{x}+27-36\sqrt{x}=0\)
\(\Leftrightarrow27x-63\sqrt{x}+27=0\)
Tìm min \(P=x^2+4y^2+\dfrac{75}{x}+\dfrac{1}{y}\). Biết \(x,y>0;x+y>=6\)
\(2P=2x^2+8y^2+\dfrac{150}{x}+\dfrac{2}{y}\)
\(=\dfrac{7}{5}x^2+7y^2+\left(\dfrac{3}{5}x^2+\dfrac{75}{x}+\dfrac{75}{x}\right)+\left(y^2+\dfrac{1}{y}+\dfrac{1}{y}\right)\)
Ta có: \(\left(5+1\right)\left(x^2+5y^2\right)\ge5\left(x+y\right)^2\Rightarrow\dfrac{7\left(x^2+5y^2\right)}{5}\ge\dfrac{7\left(x+y\right)^2}{6}\ge42\)
\(\Rightarrow2P\ge42+3\sqrt[3]{\dfrac{3.75^2.x^2}{5x^2}}+3\sqrt[3]{\dfrac{y^2}{y^2}}=90\)
\(\Rightarrow P\ge45\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(5;1\right)\)
cho x,y,z dương thỏa \(xyz=1\)
tìm min \(P=\dfrac{x+2}{x^3\left(y+z\right)}+\dfrac{y+2}{y^3\left(z+x\right)}+\dfrac{z+2}{z^3\left(x+y\right)}\)
Ta có nhận xét sau:
\(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)
Tương tự với các phân thức còn lại
Ta đặt:
\(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)
\(\Rightarrow abc=1\) và \(a,b,c>0\)
Biểu thức P trở thành:
\(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)
Dễ thấy:
\(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)
\(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)
Do đó:
\(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho A =\(\dfrac{x^{2}+3}{x+1}\) (x>-1) tìm A min
Tìm min B biết \(B=\dfrac{x+1}{2x}.\dfrac{2x^2}{x^2+x+1}\)
\(B=\dfrac{x^2+x}{x^2+x+1}=\dfrac{3x^2+3x}{3\left(x^2+x+1\right)}=\dfrac{-\left(x^2+x+1\right)+4x^2+4x+1}{3\left(x^2+x+1\right)}\)
\(=-\dfrac{1}{3}+\dfrac{\left(2x+1\right)^2}{3\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge-\dfrac{1}{3}\)
\(B_{min}=-\dfrac{1}{3}\) khi \(x=-\dfrac{1}{2}\)
bài 1 : Tìm GTNN(min) : A = \(\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}x\)
bài 2 : Cho P(x) = ax3 + bx2 + cx + d với a,b,c,d \(\in\) Z
Biết P(0) và P(1) là số lẻ
Chứng minh rằng : P(x) không thể có nghiệm là số nguyên
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
cho \(x,y>0;\dfrac{1}{x}+\dfrac{2}{y}=1\). tìm min P=x+y
\(1=\dfrac{1}{x}+\dfrac{2}{y}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{x+y}=\dfrac{3+2\sqrt{2}}{x+y}\)
\(\Rightarrow x+y\ge3+2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1+\sqrt{2};2+\sqrt{2}\right)\)
cho x2+y2+z2=3,x,y,z>0 tìm min A=\(\dfrac{1}{x+2}\)+\(\dfrac{1}{y+2}\)+\(\dfrac{1}{z+2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$
Áp dụng BĐT Bunhiacopxky:
$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$
$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$
$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$
Cho 2 biểu thức
A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}-1}\) - \(\dfrac{\sqrt{x}+5}{x-1}\) với x ≥ 0, x ≠ 1
a, CM B= \(\dfrac{2}{\sqrt{x}+1}\)
b, Tìm tất cả giá trị của x để biểu thức P=2AB + \(\sqrt{x}\) MIN
Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)
b.
\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)
Áp dụng BĐT Cô-si:
$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$
Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$